Math 40 Exam 5 Solutions

1. (24 points) Evaluate each function at the given values. Simplify, but don't approximate.
(a) For $Q(t)=\sqrt{1+4(t-1)^{2}}$, Evaluate $Q(0)$ and $Q(1)$.

Solution: $Q(0)=\sqrt{1+4(0-1)^{2}}=\sqrt{1+4}=\sqrt{5}$
$Q(1)=\sqrt{1+4(1-1)^{2}}=\sqrt{1}=1$
(b) For $R(x)=\sqrt[3]{3(x-3)(x+3)}$, Evaluate $R(3)$ and $R(6)$.

Solution: $R(3)=\sqrt[3]{3(3-3)(3+3)}=\sqrt[3]{0}=0$
$R(6)=\sqrt[3]{3(6-3)(6+3)}=\sqrt[3]{3^{4}}=3 \sqrt[3]{3}$
(c) For $A(y)=\left|y^{2}-y-2\right|$, Evaluate $A(0)$ and $A(2)$.

Solution: $A(0)=\left|0^{2}-0-2\right|=|-2|=2, A(2)=\left|2^{2}-2-2\right|=|0|=0$,
(d) For $F(a)=\frac{a-4}{2 a+4}$, Evaluate $F(-2.1)$ and $F(-1.9)$. Solution: $F(-2.1)=\frac{-2.1-4}{2(-2.1)+4}=$ $\frac{-6.1}{-0.2}=30.5, F(-1.9)=\frac{-1.9-4}{2(-1.9)+4}=\frac{-5.9}{0.2}=-29.5$
2. (25 points) Use the graph of $y=f(x)$ shown at right to answer the questions. In each, approximate to the nearest tenth.
(a) Find $f(-2)$ and $f(2)$

Solution: $f(-2) \approx 2$ and $f(2) \approx-2$
(b) For what value(s) of x is $f(x)=2$?

Solution: $f(-3.7) \approx 2, f(-2) \approx 2$, $f(0.5) \approx 2$ and $f(3.2) \approx 2$
(c) Find the x and y-intercepts of the graph.

Solution: $(0,3.2)$ is the y-intercept and $(1.2,0),(2.9,0)$ are the x-intercepts.
(d) What is the minimum value of $f(x)$? For what value(s) of x does f take on this minimum value?
Solution: The min is $f(2.2) \approx-2.1$
(e) Over what interval(s) is $f(x)<2$? Write the intervals using interval notation.

Solution: Inspecting the graph we see that $f(x)<2$ if $x \in(-3.6,-2) \cup(0.5,3.2)$
3. (24 points) For each function, create a table of values showing at least 4 points (find significant points for the graph) and use these to construct a careful graph of the function. Remember to scale and label the axes.
(a) $g(t)=5-\frac{3}{5} t$

x	-5	0	5	$\frac{25}{3}$
y	8	5	2	0

(b) $L(T)=\sqrt{4-T}$

T	4	$\frac{15}{4}$	3	0	-2.25
$L(T)$	0	$\frac{1}{2}$	1	2	2.5

(c) $p(n)=6-\frac{1}{2} n^{2}$

n	± 4	$\pm 2 \sqrt{3}$	± 3	± 2	0
$p(n)$	-2	0	1.5	4	6

(d) $A(x)=|2 x-5|$

T	-1	0	2	2.5	3	5	6
$L(T)$	7	5	1	0	1	5	7

4. (27 points) In each table, y varies directly or inversely with a power of x. Find the power of x and the constant of variation, k. Then write a formula for the function of the form $y=k x^{n}$ or $y=\frac{k}{x^{n}}$.

(a) | x | 4 | 8 | 16 |
| :---: | :---: | :---: | :---: |
| y | 1.25 | 2.5 | 5 | .

Solution: $y=\frac{5}{4} x$

(b) | x | 2 | 5 | 8 |
| :---: | :---: | :---: | :---: |
| y | 8 | 50 | 128 | .

Solution: $y=2 x^{2}$

(c) | x | 2 | 5 | 10 |
| :---: | :---: | :---: | :---: |
| y | 125 | 8 | 1 | .

Solution: $y=\frac{1000}{x^{3}}$

