Write all responses on separate paper. Remember to organize your work clearly. You may not use your books, notes, or any calculator on this exam.

1. (24 points) Evaluate each function at the given values. Simplify, but don't approximate.
(a) For $Q(t)=\sqrt{1+4(t-1)^{2}}$, Evaluate $Q(0)$ and $Q(1)$.
(b) For $R(x)=\sqrt[3]{3(x-3)(x+3)}$, Evaluate $R(3)$ and $R(6)$.
(c) For $A(y)=\left|y^{2}-y-2\right|$, Evaluate $A(0)$ and $A(2)$.
(d) For $F(a)=\frac{a-4}{2 a+4}$, Evaluate $F(-2.1)$ and $Q(-1.9)$.
2. (25 points) Use the graph of $y=f(x)$ shown at right to answer the questions. In each, approximate to the nearest tenth.
(a) Find $f(-2)$ and $f(2)$
(b) For what value(s) of x is $f(x)=2$?
(c) Find the x and y-intercepts of the graph.
(d) What is the minimum value of $f(x)$? For what value(s) of x does f take on this minimum value?
(e) Over what interval(s) is $f(x)<2$? Write the intervals using interval notation.

3. (24 points) For each function, create a table of values showing at least 4 points (find significant points for the graph) and use these to construct a careful graph of the function. Remember to scale and label the axes.
(a) $g(t)=5-\frac{3}{5} t$
(b) $L(T)=\sqrt{4-T}$
(c) $p(n)=6-\frac{1}{2} n^{2}$
(d) $A(x)=|2 x-5|$
4. (27 points) In each table, y varies directly or inversely with a power of x. Find the power of x and the constant of variation, k. Then write a formula for the function of the form $y=k x^{n}$ or $y=\frac{k}{x^{n}}$.

(a) | x | 4 | 8 | 16 |
| :---: | :---: | :---: | :---: |
| y | 1.25 | 2.5 | 5 | .

(b) | x | 2 | 5 | 8 |
| :---: | :---: | :---: | :---: |
| y | 8 | 50 | 128 | .

(c) | x | 2 | 5 | 10 |
| :---: | :---: | :---: | :---: |
| y | 125 | 8 | 1 | .

