1 Math 40 Exam 4 Solutions

1. Consider the quadratic equation $y=10 x^{2}+21 x-13$
(a) Specify the values of the coefficients, a, b and c.

Solution: $a=10, b=21, c=-13$
(b) Compute the value of the discriminant in the quadratic formula.

Solution: $D=b^{2}-4 a c=21^{2}-4(10)(-13)=441+520=961=31^{2}$
(c) Use the quadratic formula to find the x-intercepts of the parabola.

Solution: $x=\frac{-21 \pm \sqrt{961}}{2(10)}=\frac{-21 \pm 31}{20}=\left\{\begin{aligned} \frac{-13}{5} & \text { : if we subtract } \\ \frac{1}{2} & \text { : if we add }\end{aligned}\right.$
(d) What is the x-coordinate of the vertex?

Solution: At least two good approaches to finding the x-coordinate of the vertex. You can take the average of the x-intercepts: $x_{v}=\frac{\frac{-13}{5}+\frac{1}{2}}{2}=\frac{-13}{10}+\frac{1}{4}=\frac{-26}{20}+\frac{5}{20}=\frac{-21}{20}$ or you can use the formula, $x_{v}=-\frac{b}{2 a}=-\frac{21}{20}$
2. Graph each parabola. Give the coordinates of the vertex and intercepts in each.
(a) $y=(x-3)^{2}$

Solution:
Vertex at $(3,0)$,
y-intercept $(0,9)$

(b) $y=-\frac{2}{3}(x-3)^{2}$

Solution:

Vertex at $(3,0)$, y-intercept $(0,-6)$

(c) $y=2-\frac{2}{3}(x-3)^{2}$

Solution:

Vertex at (3,2)
y-intercept, $(0,-4)$

3. Find coefficients a, b and c for the parabola $y=a x^{2}+b x+c$ that fits the points in the table: | x | -2 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| y | 13 | 4 | 9 | .

Solution: Plugging the (x, y) pairs into $y=a x^{2}+b x+c \Leftrightarrow x^{2} a+x b+c=y$ we have

$$
\begin{aligned}
4 a-2 b+c & =13 \\
a+b+c & =4 \\
4 a+2 b+c & =9
\end{aligned}
$$

Eliminating c from the first and second, then again from the first and third equations yields

$$
\begin{array}{r}
3 a-3 b=9 \\
-4 b=4
\end{array}
$$

So $b=-1$ which means that $a=2$ and so $c=3$. The equation for the parabola is then $y=2 x^{2}-x+3$ and you can check that it fits the data.
4. A child throws her doll up out a window. The doll starts at a height of 8 meters above the ground and reaches a maximum height of 9 meters when it's 1 meter from the house.
(a) Write an equation for the height of the doll in terms of its distance from the house.

Solution: The vertex is at $(1,9)$ so we can write $h=a(d-1)^{2}+9$. To determine a note that when $d=0, h=8$ so $8=a(0-1)^{2}+9 \Leftrightarrow a=-1$. So $h=9-(d-1)^{2}$
(b) How far from the house will the doll hit the ground?

Solution: Set $h=0$ and solve for $d: 9-(d-1)^{2}=0 \Leftrightarrow d-1= \pm 3$. Since the doll lands outside the house, we choose $d=4$ meters.
5. Consider the parabola whose graph is shown at right.
(a) Find the coordinates of the vertex.

Solution: The vertex is at $(10,25)$
(b) Find the vertex form for the equation of the parabola.
Solution: $y=a(x-10)^{2}+25$ Since the parabola passes through $(0,-25)$ we can find a by plugging in these coordinates and solving: $-25=a(0-10)^{2}+25 \Leftrightarrow 100 a=-50 \Leftrightarrow$ $a=-\frac{1}{2}$. Thus $y=-\frac{1}{2}(x-10)^{2}+25$
(c) Find the x-intercepts of the parabola.

Set $y=0$ and solve for x : $\frac{1}{2}(x-10)^{2}=25 \Leftrightarrow$ $(x-10)^{2}=50 \Leftrightarrow x=10 \pm \sqrt{50}=10 \pm 5 \sqrt{2}$

6. Consider the parabola described by $y=-2(x+3)(x-7)$
(a) What are the x-intercepts of the parabola?

Solution: The x intercepts are at $(-3,0),(7,0)$
(b) What are the coordinates of the vertex?

Solution: The x-coordinate of the vertex is halfway between the intercepts: $x_{v}=\frac{-3+7}{2}=2$ and so $y_{v}=-2(2+3)(2-7)=50$ Thus the vertex is at $(2,50)$
(c) Solve the inequality $-2(x+3)(x-7) \geq 0$. Write the solution in interval notation.

Solution: The parabola opens downwards from its vertex at $(2,50)$ and so $y \geq 0$ is x is between the x-intercepts: $-3 \leq x \leq 7 \Leftrightarrow x \in[-3,7]$
7. Solve each inequality and write the solutions in interval notation.
(a) $(x-1)(x+2)>0$
Solution:
$x \in(-\infty,-2) \cup(1, \infty)$
(b) $(x-3)^{2}-16 \leq 0$

Solution:
$-4 \leq x-3 \leq 4$
$\Leftrightarrow x \in[-1,7]$
(c) $10 x^{2}+21 x-13 \leq 0$

Solution: $x \in\left[\frac{-13}{5}, \frac{1}{2}\right]$

