
1 Math 40 Exam 4 Solutions

- 1. Consider the quadratic equation $y = 10x^2 + 21x 13$
 - (a) Specify the values of the coefficients, a, b and c. Solution: a = 10, b = 21, c = -13
 - (b) Compute the value of the discriminant in the quadratic formula. Solution: $D = b^2 - 4ac = 21^2 - 4(10)(-13) = 441 + 520 = 961 = 31^2$
 - (c) Use the quadratic formula to find the x-intercepts of the parabola.

Solution:
$$x = \frac{-21 \pm \sqrt{961}}{2(10)} = \frac{-21 \pm 31}{20} = \begin{cases} \frac{-13}{5} & \text{: if we subtract} \\ \frac{1}{2} & \text{: if we add} \end{cases}$$

- (d) What is the *x*-coordinate of the vertex? **Solution:** At least two good approaches to finding the *x*-coordinate of the vertex. You can take the average of the *x*-intercepts: $x_v = \frac{\frac{-13}{5} + \frac{1}{2}}{2} = \frac{-13}{10} + \frac{1}{4} = \frac{-26}{20} + \frac{5}{20} = \frac{-21}{20}$ or you can use the formula, $x_v = -\frac{b}{2a} = -\frac{21}{20}$
- 2. Graph each parabola. Give the coordinates of the vertex and intercepts in each.

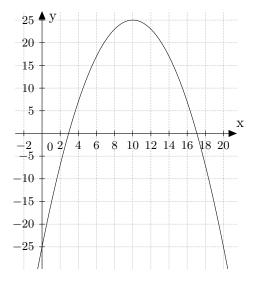
3. Find coefficients a, b and c for the parabola $y = ax^2 + bx + c$ that fits the points in the table: $\frac{x \| -2 \| 1 \| 2}{1 \| 2 \| 1 \| 2}$

 $y \parallel 1\overline{3} \mid 4 \mid 9$.

Solution: Plugging the (x, y) pairs into $y = ax^2 + bx + c \Leftrightarrow x^2a + xb + c = y$ we have

$$4a - 2b + c = 13$$
$$a + b + c = 4$$
$$4a + 2b + c = 9$$

Eliminating c from the first and second, then again from the first and third equations yields


$$3a - 3b = 9$$
$$-4b = 4$$

So b = -1 which means that a = 2 and so c = 3. The equation for the parabola is then $y = 2x^2 - x + 3$ and you can check that it fits the data.

- 4. A child throws her doll up out a window. The doll starts at a height of 8 meters above the ground and reaches a maximum height of 9 meters when it's 1 meter from the house.
 - (a) Write an equation for the height of the doll in terms of its distance from the house. **Solution:** The vertex is at (1,9) so we can write $h = a(d-1)^2 + 9$. To determine a note that when d = 0, h = 8 so $8 = a(0-1)^2 + 9 \Leftrightarrow a = -1$. So $h = 9 - (d-1)^2$
 - (b) How far from the house will the doll hit the ground? Solution: Set h = 0 and solve for d: $9 - (d - 1)^2 = 0 \Leftrightarrow d - 1 = \pm 3$. Since the doll lands outside the house, we choose d = 4 meters.
- 5. Consider the parabola whose graph is shown at right.
 - (a) Find the coordinates of the vertex.Solution: The vertex is at (10, 25)
 - (b) Find the vertex form for the equation of the parabola.

Solution: $y = a(x - 10)^2 + 25$ Since the parabola passes through (0, -25) we can find a by plugging in these coordinates and solving: $-25 = a(0-10)^2 + 25 \Leftrightarrow 100a = -50 \Leftrightarrow a = -\frac{1}{2}$. Thus $y = -\frac{1}{2}(x - 10)^2 + 25$

(c) Find the x-intercepts of the parabola. Set y = 0 and solve for x: $\frac{1}{2}(x-10)^2 = 25 \Leftrightarrow$ $(x-10)^2 = 50 \Leftrightarrow x = 10 \pm \sqrt{50} = 10 \pm 5\sqrt{2}$

- 6. Consider the parabola described by y = -2(x+3)(x-7)
 - (a) What are the *x*-intercepts of the parabola? **Solution:** The *x*intercepts are at (-3,0), (7,0)
 - (b) What are the coordinates of the vertex?

Solution: The x-coordinate of the vertex is halfway between the intercepts: $x_v = \frac{-3+7}{2} = 2$ and so $y_v = -2(2+3)(2-7) = 50$ Thus the vertex is at (2,50)

- (c) Solve the inequality $-2(x+3)(x-7) \ge 0$. Write the solution in interval notation. Solution: The parabola opens downwards from its vertex at (2, 50) and so $y \ge 0$ is x is between the x-intercepts: $-3 \le x \le 7 \Leftrightarrow x \in [-3, 7]$
- 7. Solve each inequality and write the solutions in interval notation.

(a) (x-1)(x+2) > 0 **Solution:** $x \in (-\infty, -2) \cup (1, \infty)$ (b) $(x-3)^2 - 16 \le 0$ **Solution:** $-4 \le x - 3 \le 4$ $\Leftrightarrow x \in [-1, 7]$ (c) $10x^2 + 21x - 13 \le 0$ **Solution:** $x \in \left[\frac{-13}{5}, \frac{1}{2}\right]$