1. (16 points) Find the pattern and fill in the table.

Then write an equation for the second variable in terms of the first variable.

| x | 3             | 4 | 9 | 10             | 11 | 12 | 15 |
|---|---------------|---|---|----------------|----|----|----|
| y | $\frac{2}{5}$ | 1 | 4 | $\frac{23}{5}$ |    |    |    |

## Solution

We note that the pattern is linear, not surprising since that's what this chapter is all about! To see this note that the rate of change in y per change in x is constant:

| $\Delta y$ _ | $1 - \frac{2}{5}$ | 4 - 1 | $\frac{23}{5} - 4$ | 3              |
|--------------|-------------------|-------|--------------------|----------------|
| $\Delta x$   | 4 - 3             | 9 - 4 | 10 - 9             | $\overline{5}$ |

Thus the rate of change in these data is a constant proportion of a change of 3 in y for every change of 5 in x, or, equivalently, a change of  $\frac{3}{5}$  in y for every change of 1 in x. To complete the table then we see that a change of 1 in x from 10 to 11 yields a change in y of  $\frac{3}{5} = 0.6$  in y from  $\frac{23}{5} = 4.6$  to  $\frac{26}{5} = 5.2$  and, similarly a change of 1 in x from 11 to 12 yields a change in y of  $\frac{3}{5} = 0.6$  in y from  $\frac{26}{5} = 5.2$  to  $\frac{29}{5} = 5.8$ . Finally, x = 15 can be seen as a change in x of 5 from x = 10, yielding a change in y of 3 from  $y = \frac{23}{5} = 4.6$ , so the last point in the table has  $y = \frac{23}{5} + 3 = \frac{38}{5} = 7.6$ .

| ] | Γhe | tabl | le c | an | be | fill€ | ed in | with | ı eith | ner | fractions | or | thei | r d | lecim | nal e | equiv | rale | nts: |
|---|-----|------|------|----|----|-------|-------|------|--------|-----|-----------|----|------|-----|-------|-------|-------|------|------|
|   |     |      |      |    |    |       |       |      |        | •   |           |    |      |     |       |       |       |      |      |

| x | 3             | 4 | 9 | 10             | 11             | 12             | 15             | x | 3   | 4 | 9 | 10  | 11  | 12  | 15  |
|---|---------------|---|---|----------------|----------------|----------------|----------------|---|-----|---|---|-----|-----|-----|-----|
| y | $\frac{2}{5}$ | 1 | 4 | $\frac{23}{5}$ | $\frac{26}{5}$ | $\frac{29}{5}$ | $\frac{38}{5}$ | y | 0.4 | 1 | 4 | 4.6 | 5.2 | 5.8 | 7.6 |

An equation for the line is easy since we know the slope and at least one point we can plug into the slope-intercept formula:  $y - 1 = \frac{3}{5}(x - 4) \Leftrightarrow y = \frac{3}{5}x - \frac{7}{5}$ .

2. Genny is driving from her home in Indio to her parents' home in Blythe, 100 miles away.

| Miles Driven    | 10 | 30 | 60 | 80 | 90 |
|-----------------|----|----|----|----|----|
| Miles Remaining |    |    |    |    |    |

(a) (8 points) Fill in the table.

| Solution  | Miles Driven    | 10 | 30 | 60 | 80 | 90 |
|-----------|-----------------|----|----|----|----|----|
| Solution. | Miles Remaining | 90 | 70 | 40 | 20 | 10 |

- (b) (8 points) Let d stand for the number of miles Genny has driven and r for the number of miles that remain. Write an equation for r in terms of d.
  Solution: r = 100 d
- 3. Consider the equation 4.5x 3y = 27.
  - (a) (8 points) Find the intercepts for the equation and write these as ordered pairs (i.e., in the form (x, y).)
    Solution: If x = 0 then -3y = 27 ⇔ y = -9, so (0, -9) is the y-intercept. If y = 0 then 4.5x = 27 ⇔ x = <sup>27</sup>/<sub>4.5</sub> = <sup>270</sup>/<sub>45</sub> = 6 so (2.2)

(6,0) is the *x*-intercept.

(b) (8 points) Construct a graph for the solution set of the equation showing all points between and including the intercepts.

Solution:



- 4. Solve for y in terms of x. Simplify your answer either as a fraction in lowest terms or a decimal. Do not approximate.
  - (a) (9 points) -7x + 8y = 36Solution:  $-7x + 8y = 36 \Leftrightarrow 8y = 7x + 36 \Leftrightarrow y = \frac{7}{8}x + \frac{9}{2} \Leftrightarrow y = 0.875x + 4.5$
  - (b) (9 points)  $\frac{2}{3}x \frac{3}{4}y = \frac{5}{2}$ **Solution:**  $\frac{2}{3}x - \frac{3}{4}y = \frac{5}{2} \Leftrightarrow -\frac{3}{4}y = -\frac{2}{3}x + \frac{5}{2} \Leftrightarrow y = \frac{8}{9}x - \frac{10}{3} \Leftrightarrow y = 0.\overline{8}x + 3.\overline{3}$

5. A graph for the solution set of 2.3x + 6.2y = 9.9 is shown below. Use the graph to answer the following questions.



- (a) (4 points) Approximate the value of x where y = 0 to the nearest tenth. **Solution:** From the graph it appears that where y = 0,  $x \approx 4.3$ . To be sure,  $x = \frac{99}{23} \approx 4.3043478260869565217391304347826$  Note the repetend is 3043478260869565217391 (22 digits.)
- (b) (4 points) Approximate the value of y where x = 0.5 to the nearest tenth. **Solution:** From the graph it appears that where x = 0.5,  $y \approx 1.4$ . To be sure,  $y = \frac{9.9 - 2.3(0.5)}{6.2} = \frac{8.75}{6.2} = \frac{175}{124} = 1.41\overline{129032258064516} \approx 1.4$
- (c) (4 points) Approximate the value of x where y = 0.7 to the nearest tenth. **Solution:** From the graph it appears that where y = 0.7,  $x \approx 2.5$ . To be sure,  $x = \frac{9.9 - 6.2(0.7)}{2.3} = \frac{5.56}{2.3} = \frac{278}{115} = 2.4\overline{1739130434782608695652} \approx 2.4$  is the better approximation.
- (d) (4 points) Give the approximate solution to x > 4 to the nearest tenth. **Solution:** From the graph, it appears that x > 4 is true (approximately) if y < 0.1. To be sure (a gratuitous bit of algebra) If x = 4 then  $2.3(4) + 6.2y = 9.9 \Leftrightarrow 6.2y = 9.9 9.2 \Leftrightarrow y = \frac{7}{62} \approx \frac{1}{9} = 0.\overline{1}$  and since y is decreasing with x, x > 4 if y < 0.1.
- 6. A line passes through the points (2, 2) and (4, 1).
  - (a) (6 points) Find the slope of the line. **Solution:**  $m = \frac{\Delta y}{\Delta x} = \frac{y-2-y-1}{x_2-x_1} = \frac{1-2}{4-2} = -\frac{1}{2}.$
  - (b) (6 points) Use the point slope formula to write an equation for the line. Solution: The formula is  $y - y_1 = m(x - x_1)$ . Plugging in, we have  $y - 1 = -\frac{1}{2}(x - 4)$ .
  - (c) (6 points) Write the slope-intercept form (y = mx + b) for the equation of the line. Solution: Solving for y yields  $y = -\frac{1}{2}x + 3$