The Riemann Hypothesis
 (for High School Graduates)

by
Geoff Hagopian
for the

Math and Science Lecture Series at
College of the Desert

Bernhard Riemann (1826-1866)

- Studied under Gauss and Weber at Göttingen
- Friends with Dedekind and Dirichlet
- Uncanny knack for visualizing space
- Laid foundation for Relativity theory
- Refined definition for integral
- Studied the zeta function
- Very shy, only at ease with his family and a few mathematicians
- Very pious, in the Lutheran sense
- Very philosophical, with a vivid geometrical imagination
- Hypochondriac

From http://mathworld.wolfram.com/UnsolvedProblems.html

Unsolved Problems

There are many unsolved problems in mathematics. Some prominent outstanding unsolved problems (as well as some which are not necessarily so well known) include

1. The Goldbach conjecture.
2. The Riemann hypothesis.
3. The conjecture that there exists a Hadamard matrix for every positive multiple of 4 .
4. The twin prime conjecture (i.e., the conjecture that there are an infinite number of twin primes).
5. Determination of whether NP-problems are actually P-problems.
6. The Collatz problem.
7. Proof that the 196-algorithm does not terminate when applied to the number 196.
8. Proof that 10 is a solitary number.
9. Finding a formula for the probability that two elements chosen at random generate the symmetric group S_{n}.
10. Solving the happy end problem for arbitrary n.

Riemann Hypothesis

Version 1:

The non-trivial complex zeros of the zeta function $\zeta(z)$ lie on the line $\operatorname{Re}(z)=\frac{1}{2}$.

Version 2:

Begin with the set of all natural numbers $\{1,2,3 \ldots\}$, discard all those that are divisible by the square of any integer greater than 1 .

Thus throw out $4,8,9,16,18,20,24, \ldots$, etc.
We're left with the list of squarefree positive integers,

$$
1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23, \ldots
$$

The factorization of any one of these will contain no prime twice: $2 * 3 * 5 * 7=210$ would be on the list, for example.

Squarefree numbers are either the product of an even or an odd number of prime factors.

Let's say squarefree numbers with an odd number of prime factors are blue, the rest are red. Thus 14 is red and 30 is blue. 18 is colorless because it's not squarefree.

The squarefree numbers ≤ 71 are

$$
\begin{gathered}
1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,35,37,38 \\
39,41,42,43,46,47,51,53,55,57,58,59,61,62,65,66,67,69,70,71
\end{gathered}
$$

Of these, there are 24 blue numbers,
$2,3,5,7,11,13,17,19,23,29,30,31,37,41,42,43,47,53,59,61,66,67,70$, 71
and 20 red numbers:

$$
1,6,10,14,15,21,22,26,33,35,28,29,26,51,55,57,58,62,65,69
$$

Thus, among the first 71 positive integers, there are 4 more blue numbers than red. The Riemann's hypothesis says roughly that in every interval $[1, n]$ there are not very different quantities of red and blue numbers. More precisely, not in Riemann's formulation, but in a fully equivalent form more approachable by a high school student:

RIEMANN'S HYPTOTHESIS: Fix $\varepsilon>0$. Then we can find N such that for all $n>N$ the number of blue numbers in $[1, n]$ does not differ from the number of red numbers in $[1, n]$ by more than $n^{1 / 2+\varepsilon}$.

That is, the disparity between red and blue is at most 'about' \sqrt{n}.
For instance $4<\sqrt{71} \approx 8.4$

Below is a 71 by 71 grid showing the colors of number $1,2, \ldots, 71$ in the first row, $72,73, \ldots, 142$ in the second and on to $4970,4971, \ldots, 5041$ in the last. There are 1547 blues and 1535 reds. The difference of 12 is much less than 71 .

$=\mathrm{IF}(\mathrm{AND}($ Sheet $3!\mathrm{CB} 7=1, \mathrm{MOD}($ NumPrimeFactors $($ Sheet $3!G 7), 2)=0), 1$, $\operatorname{IF}(\operatorname{AND}($ Sheet $3!\mathrm{CB} 7=1, \mathrm{MOD}($ NumPrimeFactors(Sheet3!G7),2)=1),2,3))

The Zeta Function

If $\operatorname{Re}(s)>1$ then $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\frac{1}{8^{s}}+\frac{1}{9^{s}}+\cdots$
The Harmonic Series, $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ is a special case of the zeta function,
$\zeta(1)=\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots=\infty$ is easy to prove using just ordinary arithmetic. One of the earliest proofs was by French scholar Nicole d'Oresme (1323-1382) who noted that
$\frac{1}{3}+\frac{1}{4}>2\left(\frac{1}{4}\right)=\frac{1}{2}$
$\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>4\left(\frac{1}{8}\right)=\frac{1}{2}$
$\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}>8\left(\frac{1}{16}\right)=\frac{1}{2}$

Through analytic continuation, the Zeta function's domain can be extended to all complex numbers except $z=1$:

$$
\zeta(1-s)=2^{1-s} \pi^{-s} \cos \left(\frac{\pi s}{2}\right) \Gamma(s) \zeta(s)
$$

The Basel Problem

First stated by Jacob Bernoulli (16541705) in 1689:

Find a closed form for $\zeta(2)=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\cdots$

Note: "closed form" is an imprecise phrase meaning, loosely, "able to be expressed without using a limit, infinity or the dot, dot, dot..."

Sometimes, simply awarding a special notation, like $\sqrt{2}$ to represent the open form is sufficient.

Here's a screen capture of my work approximating $\zeta(2)$ on the TI-Voyage 200. I create a function for the $n^{\text {th }}$ partial sum $f(n)=\sum_{i=1}^{n} \frac{1}{i^{2}}$ and then evaluate $f(100), f(1000)$ and $f(10000)$. The calculator took about 4 hours or so to cough these up.

The last approximation, 1.64483 is still 0.006% short of the convergent value, which is closer to $1.64493406685 \ldots$, which is still an "open form" since it is not an exact representation and requires the dot, dot, dot - the ellipsis.

The Basel Problem was solved by Leonhard Euler in 1735, who astonished the world with $\zeta(2)=\frac{\pi^{2}}{6}$. In fact, based on this result, we can compute $\zeta(N)$ for all even values of N. For instance,

$$
\zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}
$$

If N is odd then $\zeta(N)$ is still mysterious. It wasn't until 1978 that Apéry's number $\zeta(3) \approx 1.202$ was proved irrational, by none other than the eponymous Apéry! The ashes of Roger Apéry are stored with those of his parents in columbarium number 7972 at the Père Lachaise cemetery in Paris (France) behind a plaque where his most famous result is engraved this way:

$$
1+1 / 8+1 / 27+1 / 64+\ldots \neq \mathrm{p} / \mathrm{q}
$$

Traditional Fourfold Division of Mathematics into Sub-disciplines:

- Arithmetic-The study of whole numbers and fractions.

Typical theorem: The product of two odd numbers is odd.

- Geometry-They study of figures in space-points, lines, curves, and threedimensional objects. Typical theorem: The base angles of an isosceles triangle are congruent.
- Algebra - The use of abstract symbols to represent mathematics objects (numbers, lines, matrices, transformations), and the study of the rules for combining those symbols.
Sample theorem: We can factor a difference of squares:

$$
x^{2}-y^{2}=(x+y)(x-y) .
$$

- Analysis-The study of limits. Sample theorem: The harmonic series is divergent.

Riemann helped bring about the "great fusion" of $19^{\text {th }}$ century: The cross-breeding of arithmetic and analysis to create analytic number theory. This a dichotomy of measurement built right into the English language: How much? How many? Can we measure the same sorts of things we count on a continuum? The natural numbers are embedded in the real numbers, but, like the rationals, they're islands set apart from one another in a way that irrationals are not? Note to self: find out what a Dedekind cut is.

The Prime Number Theorem

How many primes are then less than a given number?
Definition: A prime number is a natural number greater than 1 that is divisible only by 1 and itself.

The first 100 primes can be found using the simple Mathematica command

For[i=1,i<100, Print[Prime[i]];i++]

2	3	5	7	11	13	17	19	23	29	31	37
41	43	47	53	59	61	67	71	73	79	83	89
97	101	103	107	109	113	127	131	137	139	149	151
157	163	167	173	179	181	191	193	197	199	211	223
227	229	233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349	353	359
367	373	379	383	389	397	401	409	419	421	431	433
439	443	449	457	461	463	467	479	487	491	499	503
509	521	523									

Let $\pi(x)$ be the number of primes less than x. Then we can start tabulating:

\boldsymbol{x}	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	500	525
$\boldsymbol{\pi}(\boldsymbol{x})$	9	16	21	25	30	35	40	46	48	53	58	62	66	70	74	78	82	86	91	95	99

It's easy to verify there are 168 primes less than 1000 , so $\pi(1000)=168$.

The rate of occurrence of primes seems to decrease.
In fact, while 16.8% of natural numbers less than 1000 are prime, we can use Mathematica to compute the 4 primes leading up to and including the billionth prime with the command

And here they are:
\{22801763389, 22801763459, 22801763471, 22801763477, 22801763489\}
Note that the gaps between primes are larger and that the proportions has shrunk to about 4.4\%

Do the primes thin out to nothing?
No, Euclid (~ 314 BCE) showed $1 \times 2 \times 3 \times \cdots \times N+1$ is not divisible by any number from 1 to N, so it's smallest prime factor must be larger than N.

Can we find a rule that describes how the density of primes gets smaller?

How many primes less than N ?

	$\pi(N)$
1,000	168
$1,000,000$	78,498
$1,000,000,000$	$50,847,534$
$1,000,000,000,000$	$37,607,912,018$
$1,000,000,000,000,000$	$29,844,570,422,669$
$1,000,000,000,000,000,000$	$24,739,954,287,740,860$

Experimenting with different expressions involving N and $\pi(N)$ you might arrive at this:

N	$N / \pi(N)$
1,000	5.9524
$1,000,000$	12.7392
$1,000,000,000$	19.6666
$1,000,000,000,000$	26.5901
$1,000,000,000,000,000$	33.5069
$1,000,000,000,000,000,000$	40.4204

Note the relatively steady (nearly linear) increase!!!!

A Quick Review of Things Exponential and Logarithmic

$$
e \approx 2.718281828459045235360287 \ldots
$$

The Prime Number Theorem (PNT)

$$
\pi(N) \sim \frac{N}{\log (N)}
$$

This means that the probability that an arbitrarily chosen natural number is prime is

$$
\frac{\pi(N)}{N} \sim \frac{1}{\log (N)}
$$

and that the $N^{\text {th }}$ prime number is $\sim N \log (N)$. These are just ball park figures. For instance, the millionth prime number is $15,485,863$ while $10^{6} \log \left(10^{6}\right) \approx 13,815,511$. The error in approximation is almost 11%

Review of power rules:

Power Rule 1: $x^{m} \times x^{n}=x^{m+n}$
Power Rule 2: $x^{m} \div x^{n}=x^{m-n}$
Power Rule 3: $\left(x^{m}\right)^{n}=x^{m \times n}$
Power Rule 4: $x^{0}=1$, for any positive x
Power Rule 5: $x^{-n}=\frac{1}{x^{n}}$
Power Rule 6: $x^{\frac{m}{n}}$ is the $n^{\text {th }}$ root of x^{m}.
Power Rule 7: $(x \times y)^{n}=x^{n} \times y^{n}$
Power Rule 8: $x=e^{\log x}$
$a \times b=e^{\log a} \times e^{\log b}=e^{\log a+\log b}=e^{\log (a \times b)}$
Power Rule 9: $\log (a \times b)=\log a+\log b$
Power Rule 10: $\log \left(a^{N}\right)=N \times \log (a)$

The diagram above illustrates how logarithms convert harder multiplication computations to easier addition computations; repeated multiplication by 3 becomes repeated addition of $\log 3$.

Consider the area between reciprocal of the \log function and the interval $[0, x]$ on the axis:

The log integral function is $L i(x)=\int_{0}^{x} \frac{1}{\log (t)} d t$ and gives the shaded area...which depends on x. I think it turns out this integral is the same as $L i(x)=\int_{2}^{x} \frac{1}{\log (t)} d t$ so you can skip the singularity.

It turns out that $L i(x) \sim \frac{N}{\log N}$ so $\pi(N) \sim \operatorname{Li}(N)$

Back to the Zeta Function

How does $\zeta(s)$ depend on s ?

- $\quad \zeta(1)$ is undefined (infinite.)
- We have nifty closed form formulas for $\zeta(2), \zeta(4), \zeta(6), \ldots$ but not other s values.
- $\quad \zeta(1.0001) \approx 10,000.577222 \ldots$ In fact, Zeta approaches a vertical asymptote.
- Mathematica command:

Plot[Zeta[x], $\{x, 0,4\}$, PlotRange->\{-5, 5\}]
produces:

The Geometric Series

If $S_{n}(x)=1+x+x^{2}+x^{3}+\cdots+x^{n}$ then

$$
\begin{aligned}
S_{n}(x)-x S_{n}(x)= & 1+x+x^{2}+\cdots+x^{n} \\
& \quad-\left(x+x^{2}+\cdots+x^{n}+x^{n+1}\right) \\
\Leftrightarrow & (1-x) S_{n}(x)=1-x^{n+1} \\
\Leftrightarrow & S_{n}(x)=\frac{1-x^{n+1}}{1-x}
\end{aligned}
$$

If $|x|<1$ the $x^{n+1} \rightarrow 0$ as $n \rightarrow \infty$ so that

$$
\text { If }|x|<1 \text {, then } S_{n}(x) \rightarrow \frac{1}{1-x} \text { as } n \rightarrow \infty
$$

The Golden Key

Recall the zeta function for $s>1$:
$\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\frac{1}{8^{s}}+\frac{1}{9^{s}}+\cdots$

Multiply both sides by $\frac{1}{2^{s}}$ (power rule 7):
$\frac{1}{2^{s}} \zeta(s)=\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\frac{1}{12^{s}}+\frac{1}{14^{s}}+\frac{1}{16^{s}}+\frac{1}{18^{s}}+\cdots$
Now subtract the second expression from the first:

$$
\zeta(s)-\frac{1}{2^{s}} \zeta(s)=\left(1-\frac{1}{2^{s}}\right) \zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\frac{1}{15^{s}}+\frac{1}{17^{s}}+\frac{1}{19^{s}}+\cdots
$$

Do it again for multiples of 3 . Multiply both sides by $\frac{1}{3^{s}}$ to get

$$
\frac{1}{3^{s}}\left(1-\frac{1}{2^{s}}\right) \zeta(s)=\frac{1}{3^{s}}+\frac{1}{9^{s}}+\frac{1}{15^{s}}+\frac{1}{21^{s}}+\frac{1}{27^{s}}+\frac{1}{33^{s}}+\frac{1}{39^{s}}+\frac{1}{45^{s}}+\cdots
$$

and subtract from the last difference to get

$$
\begin{aligned}
& \left(1-\frac{1}{2^{s}}\right) \zeta(s)-\frac{1}{3^{s}}\left(1-\frac{1}{2^{s}}\right) \zeta(s)= \\
& \left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right) \zeta(s)=1+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\frac{1}{17^{s}}+\frac{1}{19^{s}}+\frac{1}{23^{s}}+\frac{1}{25^{s}}+\frac{1}{29^{s}}+\cdots
\end{aligned}
$$

One more time:

$$
\begin{aligned}
& \left(1-\frac{1}{5^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right) \zeta(s)= \\
& \quad 1+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\frac{1}{17^{s}}+\frac{1}{19^{s}}+\frac{1}{21^{s}}+\frac{1}{23^{s}}+\frac{1}{29^{s}}+\cdots
\end{aligned}
$$

Continuing this process ad infinitum:
$\cdots\left(1-\frac{1}{17^{s}}\right)\left(1-\frac{1}{13^{s}}\right)\left(1-\frac{1}{11^{s}}\right)\left(1-\frac{1}{7^{s}}\right)\left(1-\frac{1}{5^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right) \zeta(s)=1$
... and solving for zeta:
$\zeta(s)=\frac{1}{1-\frac{1}{2^{s}}} \times \frac{1}{1-\frac{1}{3^{s}}} \times \frac{1}{1-\frac{1}{5^{s}}} \times \frac{1}{1-\frac{1}{7^{s}}} \times \frac{1}{1-\frac{1}{11^{s}}} \times \frac{1}{1-\frac{1}{13^{s}}} \times \frac{1}{1-\frac{1}{17^{s}}} \times \frac{1}{1-\frac{1}{19^{s}}} \times \cdots$
or
$\zeta(s)=\left(1-2^{-s}\right)^{-1}\left(1-3^{-s}\right)^{-1}\left(1-5^{-s}\right)^{-1}\left(1-7^{-s}\right)^{-1}\left(1-11^{-s}\right)^{-1}\left(1-13^{-s}\right)^{-1} \cdots$
or

$$
\zeta(s)=\prod_{\text {primes }}\left(1-p^{-s}\right)^{-1}
$$

The analytic continuation of the zeta function to values less than $s=1$ is analogous to the continuation of the geometric series.

$\eta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\frac{1}{4^{s}}+\frac{1}{5^{s}}-\frac{1}{6^{s}}+\frac{1}{7^{s}}-\frac{1}{8^{s}}+\frac{1}{9^{s}}-\cdots$ is convergent for $0<s<1$.
Now,

$$
\begin{aligned}
\eta(s)= & \left(1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\frac{1}{8^{s}}+\frac{1}{9^{s}}+\cdots\right) \\
& -2 \times\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\frac{1}{1^{s}}+\cdots\right) \\
= & \left(1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\frac{1}{8^{s}}+\frac{1}{9^{s}}+\cdots\right) \\
& -2 \times \frac{1}{2^{s}}\left(1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\cdots\right) \\
= & \left(1-2 \times \frac{1}{2^{s}}\right) \zeta(s)
\end{aligned}
$$

Solving for $\zeta(s)$:

$$
\zeta(s)=\eta(s) \div\left(1-\frac{1}{2^{s-1}}\right)
$$

This allows us to compute values for $\zeta(s)$ between 0 and 1 .

$$
\zeta(1-s)=2^{1-s} \pi^{-s} \cos \left(\frac{\pi s}{2}\right) \Gamma(s) \zeta(s)
$$

where $\Gamma(s)=(s-1)$!, or an analytic extension of the factorial.

This allows you to compute, say,
$\zeta(-3)=\zeta(1-4)=2^{-3} \pi^{-4} \cos (2 \pi) \Gamma(4) \zeta(4)=\frac{1}{8} \times \frac{1}{\pi^{4}} 1 \times 3!\times \frac{\pi^{4}}{90}=\frac{1}{120}=0.008 \overline{3}$
Also, $\zeta(s)=0$ for all negative, even s.

What about unreal values of s ?

Definition: The imaginary unit, \boldsymbol{i}, is the number whose square is $-1: i^{2} \equiv-1$.
The set of complex numbers is $\mathbb{C} \equiv\{a+b i \mid a, b \in \mathbb{R}\}$ so that $\mathbb{C} \supset \mathbb{R} \supset \mathbb{Q} \supset \mathbb{Z} \supset \mathbb{N}$
Recall the geometric series:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+\cdots
$$

If $x=\frac{1}{2} i$ then

FIGURE 11-3 Analysis in the complex plane.

Now it turns out that

$$
-\log (1-x)=\int \frac{1}{1-x} d x=\int\left(1+x+x^{2}+x^{3}+\cdots\right) d x=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots
$$

So that, for instance,

$$
\log (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots
$$

Now, as everyone knows,

$$
e^{i \pi}=-1
$$

How is it possible to define a complex power of e, or any other number? By series, of course:

$$
\begin{gathered}
e^{s}=1+s+\frac{s^{2}}{1 \times 2}+\frac{s^{3}}{1 \times 2 \times 3}+\frac{s^{4}}{1 \times 2 \times 3 \times 4}+\frac{s^{5}}{1 \times 2 \times 3 \times 4 \times 5}+\cdots \\
e^{\pi i} \approx 1+3.141592 i-\frac{9.869604}{2}-\frac{31.006277 i}{6}+\frac{97.409091}{24}+\frac{306.001985 i}{120}+\cdots
\end{gathered}
$$

Since

$$
\text { If } e^{s}=w \text { then } s=\log w
$$

We can take logarithms of complex numbers too.
... and since

$$
a^{z}=\left(e^{\log a}\right)^{z}=e^{z \log a}
$$

we can raise any complex number to a complex power.
To raise $-4+7 i$ to the power $2-3 i$, start by computing

$$
\log a=\log (-4+7 i) \approx 2.08719+2.08994 i
$$

then multiply that by $2-3 i$ to get

$$
z \log a \approx(2-3 i)(2.08719+2.08994 i) \approx 10.442-2.08169 i
$$

and then raise e to that power:

$$
(-4+7 i)^{2-3 i}=e^{z \log a} \approx e^{10.442-2.08169 i} \approx-16793.46-29959.40 i
$$

Thus we can extend the domain of $\zeta(s)$ to the complex numbers....s $\neq 1$
But it's hard to visualize a graph in 4-space.

FIGURE 13-2 The function z^{2} applied to a square.

Back to the Golden Key

Turn the Golden Key upside down:

$$
\frac{1}{\zeta(s)}=\left(1-\frac{1}{2^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{5^{s}}\right)\left(1-\frac{1}{7^{s}}\right)\left(1-\frac{1}{11^{s}}\right)\left(1-\frac{1}{13^{s}}\right) \ldots
$$

Multiplying this out leads to infinitely many terms in a sum.
Each term is the product of either a 1 or a $\frac{1}{p^{s}}$ plucked from each factor.
First term: pluck 1 from each parenthesis: $1 \times 1 \cdots=1$
Second term: pluck 1 from every parenthesis except the first:

$$
-\frac{1}{2^{s}} \times 1 \times 1 \times 1 \times 1 \times 1 \times \cdots=-\frac{1}{2^{s}}
$$

Third term: pluck 1 from every parenthesis except the second:

$$
-\frac{1}{3^{s}} \times 1 \times 1 \times 1 \times 1 \times 1 \times \cdots=-\frac{1}{3^{s}}
$$

Proceeding this way, this first infinite number of terms in the expansion of the product is

$$
1-\frac{1}{2^{s}}-\frac{1}{3^{s}}-\frac{1}{5^{s}}-\frac{1}{7^{s}}-\frac{1}{11^{s}}-\cdots
$$

But there's more! We can also pick two not- 1 terms and all the rest 1 's:

$$
\begin{aligned}
\frac{1}{\zeta(s)}= & \left(1-\frac{1}{2^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{5^{s}}\right)\left(1-\frac{1}{7^{s}}\right)\left(1-\frac{1}{11^{s}}\right)\left(1-\frac{1}{13^{s}}\right) \cdots \\
= & 1-\left(\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\cdots\right) \\
& +\left(\frac{1}{6^{s}}+\frac{1}{10^{s}}+\frac{1}{14^{s}}+\frac{1}{15^{s}}+\frac{1}{21^{s}}+\cdots\right)+\cdots
\end{aligned}
$$

Then add in all possible plucks of 3 not- 1 's:

$$
\begin{aligned}
\frac{1}{\zeta(s)}= & \left(1-\frac{1}{2^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{5^{s}}\right)\left(1-\frac{1}{7^{s}}\right)\left(1-\frac{1}{11^{s}}\right)\left(1-\frac{1}{13^{s}}\right) \cdots \\
= & 1-\left(\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\cdots\right) \\
& +\left(\frac{1}{6^{s}}+\frac{1}{10^{s}}+\frac{1}{14^{s}}+\frac{1}{15^{s}}+\frac{1}{11^{s}}+\cdots\right)+ \\
& -\left(\frac{1}{30^{s}}+\frac{1}{42^{s}}+\frac{1}{66^{s}}+\frac{1}{70^{s}}+\frac{1}{78^{s}}+\cdots\right)
\end{aligned}
$$

Continuing this process leads to
$\frac{1}{\zeta(s)}=1-\frac{1}{2^{s}}-\frac{1}{3^{s}}-\frac{1}{5^{s}}+\frac{1}{6^{s}}-\frac{1}{7^{s}}+\frac{1}{10^{s}}-\frac{1}{11^{s}}-\frac{1}{13^{s}}+\frac{1}{14^{s}}+\frac{1}{15^{s}}-\frac{1}{17^{s}}-\cdots$

The Mobius Function

$$
\begin{gathered}
\mu(n)=\left\{\begin{array}{ccc}
0 & \text { if } & n \text { is not squarefree } \\
-1 & \text { if } & n \text { has an odd number of prime factors } \\
1 & \text { if } & n \text { has an even number of prime factors }
\end{array}\right. \\
\frac{1}{\zeta(s)}=\sum_{n} \frac{\mu(n)}{n^{s}}
\end{gathered}
$$

Bibliography for the the Riemann Hypothesis - unabridged
http://math.fullerton.edu/mathews/c2003/RiemannHypothesisBib/Links/RiemannHypoth esisBib lnk 3.html

1. New tests of the correspondence between unitary eigenvalues and the zeros of Riemann's zeta function
Coram M.; Diaconis P.
Journal of Physics A: Mathematical and General, 2003, vol. 36, no. 12, pp. 2883-
2906(24), Ingen
2. On a Joint Limit Distribution of the Riemann Zeta-function in the Space of Analytic Functions
Sleeviien R.
Lithuanian Mathematical Journal, October 2002, vol. 42, no. 4, pp. 419-434(16), Ingenta.
3. Generalized Wirtinger inequalities, random matrix theory, and the zeros of the Riemann zeta-function
Hall R.R.
Journal of Number Theory, December 2002, vol. 97, no. 2, pp. 397-409(13), Ingenta.
4. Linear statistics for zeros of Riemann's zeta function

Hughes C.; Rudnick Z.
Comptes Rendus Mathematique, 15 October 2002, vol. 335, no. 8, pp. 667670(4), Ingenta.
5. A Lower Bound in an Approximation Problem Involving the Zeros of the Riemann Zeta Function
Burnol J-F.
Advances in Mathematics, September 2002, vol. 170, no. 1, pp. 56-70(15), Ingenta.
6. Orders of Power Growth near the Critical Strip of the Riemann Zeta Function Makarov V.Y.
Ukrainian Mathematical Journal, January 2002, vol. 54, no. 1, pp. 154-159(6), Ingenta.
7. A Wirtinger Type Inequality and the Spacing of the Zeros of the Riemann ZetaFunction
Hall R.R.
Journal of Number Theory, April 2002, vol. 93, no. 2, pp. 235-245(11), Ingenta.
8. On Small Values of the Riemann Zeta-Function on the Critical Line and Gaps Between Zeros
Ivi A.
Lithuanian Mathematical Journal, January 2002, vol. 42, no. 1, pp. 25-36(12), Ingenta.
9. Inverse Scattering, the Coupling Constant Spectrum, and the Riemann Hypothesis Khuri N.N.

Mathematical Physics, Analysis and Geometry, 2002, vol. 5, no. 1, pp. 1-63(63), Ingenta.
10. The simplest equivalent of the Riemann hypothesis. (Russian)

Lavrik, A. F.; Lavrik-Mennlin, A. A.
Dokl. Akad. Nauk 385 (2002), no. 5, 601--603, MathSciNet.
11. The Riemann hypothesis. (Finnish)

Jutila, Matti
Arkhimedes 2001, no. 6, 2002, no. 1, 24--28, MathSciNet.
12. An observation on the zero-free region of the Riemann zeta-function Motohashi Y.
Periodica Mathematica Hungarica, February 2001, vol. 42, no. 1-2, pp. 117122(6), Ingenta.
13. Quantum spin chains and Riemann zeta function with odd arguments

Boos H.E.; Korepin V.E.
Journal of Physics A: Mathematical and General, 2001, vol. 34, no. 26, pp. 53115316(6), Ingenta.
14. Farey Series and the Riemann Hypothesis. IV

Yoshimoto M.
Acta Mathematica Hungarica, 2000, vol. 87, no. 1/2, pp. 109-119(11), Ingenta.
15. A Riemann Hypothesis for Characteristic p L-Functions

Goss D.
Journal of Number Theory, June 2000, vol. 82, no. 2, pp. 299-322(24), Ingenta.
16. A note on Nyman's equivalent formulation of the Riemann hypothesis.

Burnol, Jean-François
Algebraic methods in statistics and probability (Notre Dame, IN, 2000), 23--26, Contemp. Math., 287, Amer. Math. Soc., Providence, RI, 2001, MathSciNet.
17. The Nyman-Beurling equivalent form for the Riemann hypothesis.

Balazard, Michel; Saias, Eric
Expo. Math. 18 (2000), no. 2, 131--138, MathSciNet.
18. One Computational Approach in Support of the Riemann Hypothesis

Anita S.; Boussouar A.; Aizenberg L.; Adamchik V.; Levit V.E.
Computers and Mathematics with Applications, January 1999, vol. 37, no. 1, pp. 87-94(8), Ingenta.
19. Complements to Li's Criterion for the Riemann Hypothesis Bombieri E.; Woods J.A.C.C.
Journal of Number Theory, August 1999, vol. 77, no. 2, pp. 274-287(14), Ingenta.
20. The Nevanlinna Functions of the Riemann Zeta-Function

Shapiro Z.J.H.
Journal of Mathematical Analysis and Applications, May 1999, vol. 233, no. 1, pp. 425-435(11), Ingenta.
21. The Riemann hypothesis and the ABC conjecture. (Dutch)

Tijdeman, R.
Summer course 1999: unproven conjectures (Dutch), 31--44, CWI Syllabi, 45, Math. Centrum, Centrum Wisk. Inform., Amsterdam, 1999, MathSciNet.
22. Farey Series and the Riemann Hypothesis. II

Yoshimoto M.
Acta Mathematica Hungarica, March 1998, vol. 78, no. 4, pp. 287-304(18), Ingenta.
23. Lorentz-invariant Hamiltonian and Riemann hypothesis

Okubo S.
Journal of Physics A: Mathematical and General, 1998, vol. 31, no. 3, pp. 10491057(9), Ingenta.
24. The Riemann Hypothesis for the Goss Zeta Function for $\mathrm{q}[\mathrm{T}]$

Goss J.D.T.
Journal of Number Theory, July 1998, vol. 71, no. 1, pp. 121-157(37), Ingenta.
25. Farey Series and the Riemann Hypothesis III

Kanemitsu S.; Yoshimoto M.
The Ramanujan Journal, 1997, vol. 1, no. 4, pp. 363-378(16), Ingenta.
26. Constructing Nonresidues in Finite Fields and the Extended Riemann

Hypothesis

Johannes Buchmann; Victor Shoup
Mathematics of Computation, Vol. 65, No. 215. (Jul., 1996), pp. 1311-1326, Jstor.
27. On the Riemann Hypothesis for the Characteristic p Zeta Function Wan D.
Journal of Number Theory, May 1996, vol. 58, no. 1, pp. 196-212(17), Ingenta.
28. Riemann Hypothesis for F p [T]

Diaz-Vargas J.
Journal of Number Theory, August 1996, vol. 59, no. 2, pp. 313-318(6), Ingenta.
29. On the Riemann Hypothesis for the Characteristic p Zeta Function Wan D.
Journal of Number Theory, May 1996, vol. 58, no. 1, pp. 196-212(17), Ingenta.
30. Corrigenda for "A Conjecture of S. Chowla via the Generalized Riemann Hypothesis"
R. A. Mollin; H. C. Williams

Proceedings of the American Mathematical Society, Vol. 123, No. 3. (Mar., 1995), p. 975, Jstor.
31. The Riemann hypothesis and inverse spectral problems for fractal strings.

Lapidus, Michel L.; Maier, Helmut
J. London Math. Soc. (2) 52 (1995), no. 1, 15--34, MathSciNet.
32. Pizza Slicing, Phi's and the Riemann Hypothesis

Edward A. Bender; Oren Patashnik; Howard Rumsey, Jr.
The American Mathematical Monthly, Vol. 101, No. 4. (Apr., 1994), pp. 307-317, Jstor.
33. An Asymptotic Representation for the Riemann Zeta Function on the Critical Line
R. B. Paris

Proceedings: Mathematical and Physical Sciences, Vol. 446, No. 1928. (Sep. 8, 1994), pp. 565-587, Jstor.
34. Analytic Continuation of Riemann's Zeta Function and Values at Negative Integers Via Euler's Transformation of Series
Jonathan Sondow
Proceedings of the American Mathematical Society, Vol. 120, No. 2. (Feb., 1994), pp. 421-424, Jstor.
35. Statistical properties of the zeros of zeta functions-beyond the Riemann case Bogomolny E.; Leboeuf P.
Nonlinearity, 1994, vol. 7, no. 4, pp. 1155-1167(13), Ingenta.
36. A conjecture which implies the Riemann hypothesis.
de Branges, Louis
J. Funct. Anal. 121 (1994), no. 1, 117--184, MathSciNet.
37. The Riemann hypothesis for polynomials orthogonal on the unit circle.

Li, Xian-Jin
Math. Nachr. 166 (1994), 229--258, MathSciNet.
38. Simple Zeros of the Riemann Zeta-Function
A. Y. Cheer; D. A. Goldston

Proceedings of the American Mathematical Society, Vol. 118, No. 2. (Jun., 1993), pp. 365-372, Jstor.
39. Necessary and sufficient conditions and the Riemann hypothesis.

Csordas, George; Varga, Richard S.
Adv. in Appl. Math. 11 (1990), no. 3, 328--357, MathSciNet.
40. On the class number of real quadratic fields and the Riemann hypothesis
(Turkish).
Çallalp, Fethi
Doga Mat. 14 (1990), no. 2, 114--119, MathSciNet.
41. Minorations (sous l'hypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires. Application. (French) [Explicit lower bounds for the class numbers of imaginary quadratic fields (under the generalized Riemann hypothesis). Application]
Louboutin, Stéphane
C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 12, 795--800, MathSciNet.
42. A Conjecture of S. Chowla Via the Generalized Riemann Hypothesis
R. A. Mollin; H. C. Williams

Proceedings of the American Mathematical Society, Vol. 102, No. 4. (Apr., 1988), pp. 794-796, Jstor.
43. The Sum of Like Powers of the Zeros of the Riemann Zeta Function
D. H. Lehmer

Mathematics of Computation, Vol. 50, No. 181. (Jan., 1988), pp. 265-273, Jstor.
44. Addenda/Errata: Editor's Corner: A Greeting; and a View of Riemann's

Hypothesis (in Addenda, Errata, Etcetera, for 1987)
The American Mathematical Monthly, Vol. 94, No. 10. (Dec., 1987), p. 994, Jstor.
45. The Editor's Corner: A Greeting; and a View of Riemann's Hypothesis Herbert S. Wilf

The American Mathematical Monthly, Vol. 94, No. 1. (Jan., 1987), pp. 3-6, Jstor.
46. The Riemann Hypothesis and the Turan Inequalities

George Csordas; Timothy S. Norfolk; Richard S. Varga
Transactions of the American Mathematical Society, Vol. 296, No. 2. (Aug., 1986), pp. 521-541, Jstor.
47. On the Zeros of the Riemann Zeta Function in the Critical Strip. IV
J. van de Lune; H. J. J. te Riele; D. T. Winter

Mathematics of Computation, Vol. 46, No. 174. (Apr., 1986), pp. 667-681, Jstor.
48. The Riemann hypothesis for Hilbert spaces of entire functions.
de Branges, Louis
Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 1, 1--17, MathSciNet.
49. On stability properties which are equivalent to Riemann hypothesis.

Popov, V. M.
Libertas Math. 5 (1985), 55--61, MathSciNet.
50. On the Zeros of the Riemann Zeta Function in the Critical Strip. III
J. van de Lune; H. J. J. te Riele

Mathematics of Computation, Vol. 41, No. 164. (Oct., 1983), pp. 759-767, Jstor.
51. On the Zeros of the Riemann Zeta Function in the Critical Strip. II
R. P. Brent; J. van de Lune; H. J. J. te Riele; D. T. Winter

Mathematics of Computation, Vol. 39, No. 160. (Oct., 1982), pp. 681-688, Jstor.
52. Two consequences of the Riemann hypothesis. (Chinese)

Zhang, Nun Yao; Zhang, Shun Yan
Beijing Daxue Xuebao 1982, no. 4, 1--6, MathSciNet.
53. A Simple Approach to the Analytic Continuation and Values at Negative Integers for Riemann's Zeta-Function
David Goss
Proceedings of the American Mathematical Society, Vol. 81, No. 4. (Apr., 1981), pp. 513-517, Jstor.
54. On the Zeros of the Riemann Zeta Function in the Critical Strip

Richard P. Brent
Mathematics of Computation, Vol. 33, No. 148. (Oct., 1979), pp. 1361-1372, Jstor.
55. On the Riemann hypothesis in hyperelliptic function fields.

Stark, H. M.
Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 285--302. Amer. Math. Soc., Providence, R.I., 1973, MathSciNet.
56. Complex Zeros of an Incomplete Riemann Zeta Function and of the Incomplete Gamma Function
K. S. Kolbig

Mathematics of Computation, Vol. 24, No. 111. (Jul., 1970), pp. 679-696, Jstor.
57. Erratum: On the Zeros of the Riemann Zeta-Function
B. C. Berndt

Proceedings of the American Mathematical Society, Vol. 24, No. 4. (Apr., 1970), p. 839, Jstor.
58. On the Zeros of the Riemann Zeta-Function

Bruce C. Berndt
Proceedings of the American Mathematical Society, Vol. 22, No. 1. (Jul., 1969), pp. 183-188, Jstor.
59. On a Necessary Condition for the Validity of the Riemann Hypothesis for Functions that Generalize the Riemann Zeta Function

Ronald Alter

Transactions of the American Mathematical Society, Vol. 130, No. 1. (Jan., 1968), pp. 55-74, Jstor.
60. The Riemann hypothesis and pseudorandom features of the Möbius sequence.

Good, I. J.; Churchhouse, R. F.
Math. Comp. 221968 857--861, MathSciNet.
61. On a necessary condition for the validity of the Riemann hypothesis for functions that generalize the Riemann zeta function.
Alter, Ronald
Trans. Amer. Math. Soc. 1301968 55--74, MathSciNet.
62. Approximate Functional Approximations and the Riemann Hypothesis Robert Spira
Proceedings of the American Mathematical Society, Vol. 17, No. 2. (Apr., 1966), pp. 314-317, Jstor.
63. Separation of Zeros of the Riemann Zeta-Function
R. Sherman Lehman

Mathematics of Computation, Vol. 20, No. 96. (Oct., 1966), pp. 523-541, Jstor.
64. The Riemann hypothesis and Hilbert's tenth problem.

Chowla, S.
Mathematics and Its Applications, Vol. 4 Gordon and Breach Science Publishers,
New York-London-Paris 1965 xv+119 pp, MathSciNet.
65. The Zeros of the Riemann Zeta-Function
E. C. Titchmarsh

Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, Vol. 157, No. 891. (Nov. 2, 1936), pp. 261-263, Jstor.
66. On the Roots of the Riemann Zeta Function
J. I. Hutchinson

Transactions of the American Mathematical Society, Vol. 27, No. 1. (Jan., 1925), pp. 49-60, Jstor.
67. On Lindelofs Hypothesis Concerning the Riemann Zeta-Function
G. H. Hardy; J. E. Littlewood

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 103, No. 722. (Jun. 1, 1923), pp. 403412, Jstor.

Return to the Complex Analysis Project

(c) John H. Mathews 2003

