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Bernhard Riemann (1826-1866) 
 
• Studied under Gauss and Weber at Göttingen 

 
• Friends with Dedekind and Dirichlet 

 
• Uncanny knack for visualizing space 

 
• Laid foundation for Relativity theory 

 
• Refined definition for integral 

 
• Studied the zeta function  

 
 
 

• Very shy, only at ease with his family and a few mathematicians 
 

• Very pious, in the Lutheran sense 
 

• Very philosophical, with a vivid geometrical imagination 
 

• Hypochondriac 



From http://mathworld.wolfram.com/UnsolvedProblems.html  
 

Unsolved Problems
  

There are many unsolved problems in mathematics. Some prominent 
outstanding unsolved problems (as well as some which are not necessarily so 
well known) include  

1. The Goldbach conjecture.  

2. The Riemann hypothesis.  

3. The conjecture that there exists a Hadamard matrix for every positive multiple 
of 4.  

4. The twin prime conjecture (i.e., the conjecture that there are an infinite 
number of twin primes).  

5. Determination of whether NP-problems are actually P-problems.  

6. The Collatz problem.  

7. Proof that the 196-algorithm does not terminate when applied to the number 
196.  

8. Proof that 10 is a solitary number.  

9. Finding a formula for the probability that two elements chosen at random 
generate the symmetric group .  

10. Solving the happy end problem for arbitrary .  
 



Riemann Hypothesis 
Version 1:  

The non-trivial complex zeros of the zeta function ( )zζ  lie on the line ( ) 1Re
2

z = . 

 
Version 2:  
 
Begin with the set of all natural numbers { }1, 2,3… , discard all those that are divisible by 
the square of any integer greater than 1. 
 
Thus throw out 4, 8, 9, 16, 18, 20, 24,…, etc. 
 
We’re left with the list of squarefree positive integers, 
 

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, … . 
 
The factorization of any one of these will contain no prime twice: 2*3*5*7 = 210 
would be on the list, for example. 
 
Squarefree numbers are either the product of an even or an odd number of prime 
factors. 
 
Let’s say squarefree numbers with an odd number of prime factors are blue, the 
rest are red.  Thus 14 is red and 30 is blue.  18 is colorless because it’s not 
squarefree.  
 
The squarefree numbers ≤ 71 are  
 
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 35, 37, 38, 

39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71 
 
Of these, there are 24 blue numbers, 
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70, 

71 
and 20 red numbers: 

1, 6, 10, 14, 15, 21, 22, 26, 33, 35, 28, 29, 26, 51, 55, 57, 58, 62, 65, 69 
 
Thus, among the first 71 positive integers, there are 4 more blue numbers than 
red.   The Riemann’s hypothesis says roughly that in every interval [1, n] there are 
not very different quantities of red and blue numbers.  More precisely, not in 
Riemann’s formulation, but in a fully equivalent form more approachable by a 
high school student: 
 



RIEMANN’S HYPTOTHESIS:  Fix ε>0.  Then we can find N such that for all 
n > N the number of blue numbers in [1, n] does not differ from the number of 
red numbers in [1, n] by more than 1/ 2n ε+ .   

 
That is, the disparity between red and blue is at most ‘about’ n .   
For instance 4 < 71 8.4≈  



Below is a 71 by 71 grid showing the colors of number 1,2,…,71 in the first row, 
72, 73,…,142 in the second and on to 4970,4971,…,5041 in the last.  There are 
1547 blues and 1535 reds.  The difference of 12 is much less than 71. 
 

 
 
  
=IF(AND(Sheet3!CB7=1,MOD(NumPrimeFactors(Sheet3!G7),2)=0),1, 
       IF(AND(Sheet3!CB7=1,MOD(NumPrimeFactors(Sheet3!G7),2)=1),2,3)) 
 
 



The Zeta Function 

If  ( )Re 1s >  then ( )
1

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9s s s s s s s s s

n
s

n
ζ

∞

=

= = + + + + + + + + +∑  

 

The Harmonic Series, 1 1 11
2 3 4

+ + + +  is a special case of the zeta function, 

( )
1

1 1 11 1
2 3n n

ζ
∞

=

= = + + + = ∞∑  is easy to prove using just ordinary arithmetic.  One of 

the earliest proofs was by French scholar Nicole d’Oresme (1323-1382) who noted that 
  
 
 
 
 
1 1 1 12
3 4 4 2
1 1 1 1 1 14
5 6 7 8 8 2
1 1 1 1 1 1 1 1 1 18
9 10 11 12 13 14 15 16 16 2

⎛ ⎞+ > =⎜ ⎟
⎝ ⎠

⎛ ⎞+ + + > =⎜ ⎟
⎝ ⎠

⎛ ⎞+ + + + + + + > =⎜ ⎟
⎝ ⎠

 
 
Through analytic continuation, the Zeta function’s domain can be extended to all 
complex numbers except z = 1: 

( ) ( ) ( )11 2 cos
2

s s ss s sπζ π ζ− − ⎛ ⎞− = Γ⎜ ⎟
⎝ ⎠

 



The Basel Problem 
First stated by Jacob Bernoulli (1654–
1705) in 1689: 

 
Find a closed form for 

( ) 2 2 2 2 2 2

1 1 1 1 1 12 1
2 3 4 5 6 7

ζ = + + + + + + +

 

Note: “closed form” is an imprecise 
phrase meaning, loosely, “able to be 
expressed without using a limit, infinity or 
the dot, dot, dot…” 

 

Sometimes, simply awarding a special 
notation, like 2  to represent the open  
form is sufficient. 

Here’s a screen capture of my work approximating ζ(2) on the TI-Voyage 200.  I create a 

function for the nth partial sum ( ) 2
1

1n

i
f n

i=

= ∑  and then evaluate f (100), f (1000) and  

f (10000).  The calculator took about 4 hours or so to cough these up.   

 



The last approximation, 1.64483 is still 0.006% short of the convergent value, which is 
closer to 1.64493406685…, which is still an “open form” since it is not an exact 
representation and requires the dot, dot, dot – the ellipsis. 

The Basel Problem was solved by Leonhard Euler in 1735, who astonished the world 

with ( )
2

2
6
πζ = .  In fact, based on this result, we can compute ( )Nζ  for all even values 

of N.  For instance,  

( ) ( )
4 6

4 , 6
90 945
π πζ ζ= =  

If N is odd then ( )Nζ  is still mysterious.  It wasn’t until 1978 that Apéry’s number 

( )3 1.202ζ ≈  was proved irrational, by none other than the eponymous Apéry!  The 
ashes of Roger Apéry are stored with those of his parents in columbarium number 7972 
at the Père Lachaise cemetery in Paris (France) behind a plaque where his most famous 
result is engraved this way:  

1 + 1/8 + 1/27 + 1/64 + ...   ≠   p/q  

 





Traditional Fourfold Division of Mathematics into Sub-disciplines: 

• Arithmetic—The study of whole numbers and fractions. 
Typical theorem: The product of two odd numbers is odd. 
 

• Geometry—They study of figures in space—points, lines, curves, and three-
dimensional objects.  Typical theorem: The base angles of an isosceles 
triangle are congruent. 
 

• Algebra—The use of abstract symbols to represent mathematics objects 
(numbers, lines, matrices, transformations), and the study of the rules for 
combining those symbols. 
Sample theorem: We can factor a difference of squares: 

( )( )2 2x y x y x y− = + − . 
 

• Analysis—The study of limits.  Sample theorem: The harmonic series is 
divergent. 
 

Riemann helped bring about the “great fusion” of 19th century:  The cross-breeding of 
arithmetic and analysis to create analytic number theory.  This a dichotomy of 
measurement built right into the English language: How much?  How many? Can we 
measure the same sorts of things we count on a continuum?  The natural numbers are 
embedded in the real numbers, but, like the rationals, they’re islands set apart from one 
another in a way that irrationals are not?  Note to self: find out what a Dedekind cut is. 

 



The Prime Number Theorem 
How many primes are then less than a given number?  

Definition:  A prime number is a natural number greater than 1 that is divisible only by 1 
and itself.   

The first 100 primes can be found using the simple Mathematica command  
 
For[i=1,i<100,Print[Prime[i]];i++] 

2 3 5 7 11 13 17 19 23 29 31 37 

41 43 47 53 59 61 67 71 73 79 83 89  

97 101 103 107 109 113 127 131 137 139 149 151 

157 163 167 173 179 181 191 193 197 199 211 223 

227 229 233 239 241 251 257 263 269 271 277 281 

283 293 307 311 313 317 331 337 347 349 353 359 

367 373 379 383 389 397 401 409 419 421 431 433  

439 443 449 457 461 463 467 479 487 491 499 503  

509 521 523 

 

Let π(x) be the number of primes less than x.  Then we can start tabulating: 

x 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525
π(x) 9 16 21 25 30 35 40 46 48 53 58 62 66 70 74 78 82 86 91 95 99

It’s easy to verify there are 168 primes less than 1000, so ( )1000 168π = . 

The rate of occurrence of primes seems to decrease. 

In fact, while 16.8% of natural numbers less than 1000 are prime, we can use 
Mathematica to compute the 4 primes leading up to and including the billionth prime 
with the command 

{Prime[10^9-4],Prime[10^9-3],Prime[10^9-2],Prime[10^9-1],Prime[10^9]} 



And here they are: 
 
{22801763389, 22801763459, 22801763471, 22801763477, 22801763489} 

Note that the gaps between primes are larger and that the proportions has shrunk to about 
4.4% 

Do the primes thin out to nothing?   

No, Euclid (~314 BCE) showed 1 2 3 1N× × × × +  is not divisible by any number from 1 
to N, so it’s smallest prime factor must be larger than N. 

Can we find a rule that describes how the density of primes gets smaller? 

N 

How many primes less than N?
( )Nπ  

1,000 168 
1,000,000 78,498 

1,000,000,000 50,847,534 
1,000,000,000,000 37,607,912,018 

1,000,000,000,000,000 29,844,570,422,669 
1,000,000,000,000,000,000 24,739,954,287,740,860 

Experimenting with different expressions involving N and π(N) you might arrive at this: 

N ( )/N Nπ  

1,000 5.9524
1,000,000 12.7392

1,000,000,000 19.6666
1,000,000,000,000 26.5901

1,000,000,000,000,000 33.5069
1,000,000,000,000,000,000 40.4204

Note the relatively steady (nearly linear) increase!!!! 

 



A Quick Review of Things Exponential and Logarithmic 

2.718281828459045235360287e ≈ …  

 

N 3N  
1 3 
2 9 
3 27 
4 81 

N Ne  
1 2.71828182
2 7.38905609
3 20.08553692
4 54.59815003

N log(N) 
2.718281828 1 
7.389056099 2 
20.08553692 3 
54.59815003 4 

N log(N)  ( )/N Nπ  % error 

1,000 6.9078  5.9524 16.05% 
1,000,000 13.8155  12.7392 8.45% 

1,000,000,000 20.7233  19.6666 5.37% 
1,000,000,000,000 27.6310  26.5901 3.91% 

1,000,000,000,000,000 34.5388  33.5069 3.08% 
1,000,000,000,000,000,000 41.4465  40.4204 2.54% 

The Prime Number Theorem (PNT) 

( ) ( )log
NN

N
π ∼  

This means that the probability that an arbitrarily chosen natural number is prime is  

( )
( )
1~

log
N

N N
π

 

and that the Nth prime number is ( )~ logN N .  These are just ball park figures.  For 

instance, the millionth prime number is 15,485,863 while ( )6 610 log 10 13,815,511≈ .  
The error in approximation is almost 11% 

 



Review of power rules: 

Power Rule 1: m n m nx x x +× =  
Power Rule 2: m n m nx x x −÷ =  
Power Rule 3: ( )nm m nx x ×=  

Power Rule 4: 0 1x = , for any positive x 

Power Rule 5: 1n
nx

x
− =  

Power Rule 6: 
m
nx  is the nth root of xm. 

Power Rule 7: ( )n n nx y x y× = ×  
 
Power Rule 8: log xx e=  

( )loglog log log log a ba b a ba b e e e e ×+× = × = =  

Power Rule 9: ( )log log loga b a b× = +  
 
Power Rule 10: ( ) ( )log logNa N a= ×  



The diagram above illustrates how logarithms convert harder multiplication computations 
to easier addition computations; repeated multiplication by 3 becomes repeated addition 
of log3. 

Consider the area between reciprocal of the log function and the interval [0, x] on the 
axis: 

 
 



The log integral function is ( ) ( )0

1
log

x
Li x dt

t
= ∫  and gives the shaded area…which 

depends on x.  I think it turns out this integral is the same as ( ) ( )2

1
log

x
Li x dt

t
= ∫  so you 

can skip the singularity. 
 

It turns out that ( )
log

NLi x
N

∼  so ( ) ( )N Li Nπ ∼  

 

Back to the Zeta Function 

How does ( )sζ  depend on s? 

• ( )1ζ  is undefined (infinite.) 

• We have nifty closed form formulas for ( )2ζ , ( )4ζ , ( )6ζ ,… but not other s 
values. 

• ( )1.0001 10,000.577222...ζ ≈   In fact, Zeta approaches a vertical asymptote. 
• Mathematica command:   

 Plot[Zeta[x],{x,0,4},PlotRange->{-5, 5}]  
produces: 

 



The Geometric Series 

If ( ) 2 31 n
nS x x x x x= + + + + +  then  

 

                            
( ) ( )

( )
2

2 1

1 n
n n

n n

S x xS x x x x

x x x x +

− = + + + +

− + + + +
 

 
( ) ( )

( )

1

1

1 1

1
1

n
n

n

n

x S x x

xS x
x

+

+

⇔ − = −

−
⇔ =

−

 

If 1x <  the 1 0nx + →  as n →∞  so that  

 If 1x < , then ( ) 1
1nS x

x
→

−
as n →∞  

 

 

 



The Golden Key 
 
Recall the zeta function for s > 1: 
 

( )
1

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9s s s s s s s s s

n

s
n

ζ
∞

=

= = + + + + + + + + +∑  

Multiply both sides by 1
2s  (power rule 7): 

( )1 1 1 1 1 1 1 1 1 1
2 2 4 6 8 10 12 14 16 18s s s s s s s s s ssζ = + + + + + + + + +  

Now subtract the second expression from the first: 

( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 11 1
2 2 3 5 7 9 11 13 15 17 19s s s s s s s s s s ss s sζ ζ ζ⎛ ⎞− = − = + + + + + + + + + +⎜ ⎟

⎝ ⎠
 

Do it again for multiples of 3.  Multiply both sides by 1
3s  to get  

( )1 1 1 1 1 1 1 1 1 11
3 2 3 9 15 21 27 33 39 45s s s s s s s s s ssζ⎛ ⎞− = + + + + + + + +⎜ ⎟
⎝ ⎠

 

and subtract from the last difference to get  
 

( ) ( )

( )

1 1 11 1
2 3 2
1 1 1 1 1 1 1 1 1 1 11 1 1
3 2 5 7 11 13 17 19 23 25 29

s s s

s s s s s s s s s s s

s s

s

ζ ζ

ζ

⎛ ⎞ ⎛ ⎞− − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞− − = + + + + + + + + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
One more time: 
 

( )1 1 11 1 1
5 3 2

1 1 1 1 1 1 1 11
7 11 13 17 19 21 23 29

s s s

s s s s s s s s

sζ⎛ ⎞⎛ ⎞⎛ ⎞− − − =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

+ + + + + + + + +
 

Continuing this process ad infinitum: 



( )1 1 1 1 1 1 11 1 1 1 1 1 1 1
17 13 11 7 5 3 2s s s s s s s sζ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞− − − − − − − =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 

…and solving for zeta: 

( ) 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11 1 1 1 1 1 1 1
2 3 5 7 11 13 17 19s s s s s s s s

sζ = × × × × × × × ×
− − − − − − − −

 

or 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1

1 2 1 3 1 5 1 7 1 11 1 13s s s s s ssζ
− − − − − −− − − − − −= − − − − − −  

or 
( ) ( ) 1

primes

1 ss pζ
−−= −∏  

 
 
The analytic continuation of the zeta function to values less than s = 1 is analogous to the 
continuation of the geometric series.  
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-25 -24 -23 -22 -21 -20

-80000
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-40000

-20000

 



-31 -30 -29 -28 -27 -26

2´108

4´108

6´108

 

-37 -36 -35 -34 -33 -32

-2´1013

-1.5 ´1013

-1´1013

-5´1012

 
 



( ) 1 1 1 1 1 1 1 11
2 3 4 5 6 7 8 9s s s s s s s ssη = − + − + − + − + −  is convergent for 0 < s < 1. 

Now, 

( )

( )

1 1 1 1 1 1 1 11
2 3 4 5 6 7 8 9

1 1 1 1 1 12
2 4 6 8 10 12

1 1 1 1 1 1 1 11
2 3 4 5 6 7 8 9

1 1 1 1 1 12 1
2 2 3 4 5 6

11 2
2

s s s s s s s s

s s s s s s

s s s s s s s s

s s s s s s

s

s

s

η

ζ

⎛ ⎞= + + + + + + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞− × + + + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞= + + + + + + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞− × + + + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞= − ×⎜ ⎟
⎝ ⎠

 

 
Solving for ( )sζ : 

( ) ( ) 1

11
2ss sζ η −

⎛ ⎞= ÷ −⎜ ⎟
⎝ ⎠

 

 
This allows us to compute values for ( )sζ  between 0 and 1. 
 

( ) ( ) ( )11 2 cos
2

s s ss s sπζ π ζ− − ⎛ ⎞− = Γ⎜ ⎟
⎝ ⎠

 

where ( ) ( )1 !s sΓ = − , or an analytic extension of the factorial. 
 
This allows you to compute, say, 

( ) ( ) ( ) ( ) ( )
4

3 4
4

1 1 13 1 4 2 cos 2 4 4 1 3! 0.0083
8 90 120

πζ ζ π π ζ
π

− −− = − = Γ = × × × = =  

Also, ( )sζ  = 0  for all negative, even s. 
 





What about unreal values of s? 
 
Definition:  The imaginary unit, i, is the number whose square is –1: 2 1i ≡ − . 
 
The set of complex numbers is { }| ,a bi a b≡ + ∈  so that 

⊃ ⊃ ⊃ ⊃  
Recall the geometric series: 

2 3 4 5 61 1
1

x x x x x x
x
= + + + + + + +

−
 

If 1
2

x i=  then  

 
 



Now it turns out that  

( ) ( )
2 3 4

2 31log 1 1
1 2 3 4

x x xx dx x x x dx x
x

− − = = + + + + = + + + +
−∫ ∫  

So that, for instance,  

( ) 1 1 1 1 1log 2 1
2 3 4 5 6

= − + − + − +  

 
Now, as everyone knows, 

1ie π = −  
How is it possible to define a complex power of e, or any other number?  By series, of 
course: 
 

2 3 4 5

1
1 2 1 2 3 1 2 3 4 1 2 3 4 5

s s s s se s= + + + + + +
× × × × × × × × × ×

 

 
9.869604 31.006277 97.409091 306.0019851 3.141592

2 6 24 120
i i ie iπ ≈ + − − + + +  

Since 
If se w=  then logs w=  

We can take logarithms of complex numbers too. 
 
…and since  

( )log logzz a z aa e e= =  
we can raise any complex number to a complex power. 
 
To raise 4 7i− +  to the power 2 3i− , start by computing 

( )log log 4 7 2.08719 2.08994a i i= − + ≈ + , 
then multiply that by 2 3i−  to get  

( )( )log 2 3 2.08719 2.08994 10.442 2.08169z a i i i≈ − + ≈ −  
and then raise e to that power: 

( )2 3 log 10.442 2.081694 7 16793.46 29959.40i z a ii e e i− −− + = ≈ ≈ − −  
 
Thus we can extend the domain of ( )sζ  to the complex numbers…. 1s ≠  
 
But it’s hard to visualize a graph in 4-space.   
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Plot3D[Re[Zeta[x+I*y]],{x,0,1},{y,0,30}] 
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Plot3D[Im[Zeta[x+I*y]],{x,0,1},{y,0,30}] 
 
 

Back to the Golden Key 
 
Turn the Golden Key upside down: 
 

( )
1 1 1 1 1 1 11 1 1 1 1 1

2 3 5 7 11 13s s s s s ssζ
⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= − − − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

 
Multiplying this out leads to infinitely many terms in a sum.   
 

Each term is the product of either a 1 or a 1
sp

 plucked from each factor. 

 
First term:  pluck 1 from each parenthesis: 1 1 1 1 1 1 1 1 1 1 1 1× × × × × × × × × × =  
 
Second term: pluck 1 from every parenthesis except the first: 

1 11 1 1 1 1
2 2s s− × × × × × × = −  

Third term: pluck 1 from every parenthesis except the second: 



1 11 1 1 1 1
3 3s s− × × × × × × = −  

Proceeding this way, this first infinite number of terms in the expansion of the product is 
1 1 1 1 11
2 3 5 7 11s s s s s− − − − − −  

But there’s more!  We can also pick two not-1 terms and all the rest 1’s: 

( )
1 1 1 1 1 1 11 1 1 1 1 1

2 3 5 7 11 13

1 1 1 1 11
2 3 5 7 11
1 1 1 1 1
6 10 14 15 21

s s s s s s

s s s s s

s s s s s

sζ
⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= − − − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞= − + + + + +⎜ ⎟
⎝ ⎠
⎛ ⎞+ + + + + + +⎜ ⎟
⎝ ⎠

 

 
Then add in all possible plucks of 3 not-1’s: 

( )
1 1 1 1 1 1 11 1 1 1 1 1

2 3 5 7 11 13

1 1 1 1 11
2 3 5 7 11
1 1 1 1 1
6 10 14 15 11
1 1 1 1 1

30 42 66 70 78

s s s s s s

s s s s s

s s s s s

s s s s s

sζ
⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= − − − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞= − + + + + +⎜ ⎟
⎝ ⎠
⎛ ⎞+ + + + + + +⎜ ⎟
⎝ ⎠
⎛ ⎞− + + + + +⎜ ⎟
⎝ ⎠

 

 
Continuing this process leads to 

( )
1 1 1 1 1 1 1 1 1 1 1 11

2 3 5 6 7 10 11 13 14 15 17s s s s s s s s s s ssζ
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