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I N T R O D U C T I O N  

T H I S  I S  A new edit ion of the .first in a series o f  collections o f  
the c o l u m n  '(Mathematical  Games" that I contributed to Sci- 
entific American over a period of twenty-jive years. The $first 
chapter,  o n  hexajlexagons, r a n  as  a n  article i n  the December 
1956 issue .  I t  prompted Gerard Pie l ,  the nlagaxine's p ~ b -  
l isher,  to propose a regular feature ow recreational mathe-  
mat ics  which began i n  Jani iary  1957 with the co lumn  here 
reprinted as  Chapter  2. 

S o  much has  been discovered a r ~ d  writterz abozit tlze topics 
of this  book sirzce i t  $?st appeared in 1959 that i f  wo7nld have 
been inzpossible to revise the text  xithozit resetti7zg type  
throughoz~t .  Accordingly,  I have w7"iten a long afterword 
that  sketches the most  signi,ficant new decelop?rlents, a72d up-  
dated the bibliograplzy for eaclz chapter except the two o n  
short proble7ns that have no  refereuce l ists .  



C H A P T E R  O N E  

Hexajlexagons 

F LEXAGONS are  paper polygons, folded from straight 
or crooked strips of paper, which have the fascinating 

property of changing their faces when they are "flexed." 
Had i t  not been for the trivial circumstance that  British and 
American notebook paper are not the same size, flexagons 
might still be undiscovered, and a number of top-flight 
mathematicians would have been denied the pleasure of an- 
alyzing their curious structures. 

I t  all began in the fall of 1939. Arthur H. Stone, a 23- 
year-old graduate student from England, in residence a t  
Princeton University on a mathematics fellowship, had just 
trimmed an inch from his American notebook sheets to make 
them fit his English binder. For amusement he began to fold 
the trimmed-off strips of paper in various ways, and one of 
the figures he made turned out to be particularly intriguing. 



He had folded the strip diagonally a t  three places and joined 
the ends so that it made a hexagon [see Fig. I ] .  When he 
pinched two adjacent triangles together and pushed the op- 
posite corner of the hexagon toward the center, the hexagon 
would open out again, like a budding flower, and show a 
completely new face. If, for instance, the top and bottom 
faces of the original hexagon were painted different colors, 

F I G .  1 .  
T r i h e x a f l e x a g o n  is constructed 
by cutting a s t r ip  of paper so 
that  it  may be marked off in 10 
equilateral triangles ( A ) .  The 
str ip  is folded backward along 
the line ab and turned over (B) .  
I t  is then folded backward again 
along the line cd and the next to  
the last triangle placed on top of 
the first ( C ) .  The last triangle is 
now folded backward and glued 
to the other side of the first (D)  . 
The figure may be flexed a s  
shown on page five. I t  is  not 
meant to  be cut  out. Fair ly  stiff 
paper a t  least a n  inch and a half 
wide is recommended. 



the new face would come up blank and one of the colored 
faces would disappear ! 

This structure, the first flexagon to  be discovered, has 
three faces. Stone did some thinking about i t  overnight, and 
on the following day confirmed his belief (arrived a t  by pure 
cerebration) that  a more complicated hexagonal model could 
be folded with six faces instead of only three. At this point 
Stone found the structure so interesting that  he showed his 
paper models to friends in the graduate school. Soon "flex- 
agons" were appearing in profusion a t  the lunch and dinner 
tables. A "Flexagon Committee" was organized to probe 
further into the mysteries of flexigation. The other members 
besides Stone were Bryant Tuckerman, a graduate student 
of mathematics ; Richard P. Feynman, a graduate student in 
physics; and John W. Tukey, a young mathematics instruc- 
tor. 

The models were named hexaflexagons- "hexa" for their 
hexagonal form, and "flexagon" for their ability to flex. 
Stone's first model is a trihexaflexagon ("tri" for the three 
different faces that can be brought into view) ; his elegant 
second structure is a hexahexaflexagon (for its six faces). 

To make a hexahexaflexagon you s tar t  with a str ip of 
paper (the tape used in adding machines serves admirably) 
which is divided into 19 equilateral triangles [see Fig. 21. 



You number the triangles on one side of the strip 1, 2 and 
3, leaving the 19th triangle blank, as shown in the drawing. 
On the opposite side the triangles are numbered 4 ,  5 and 6, 
according to the scheme shown. Now you fold the strip so 
that  the same underside numbers face each other- 4 on 4, 
5 on 5, 6 on 6 and so on. The resulting folded strip, illus- 
trated by the second drawing in the series, is then folded 
back on the lines a b  and cd [ th ird  drazoing],  forming the 
hexagon [ f o u r t h  d r a w i n g ] ;  finally the blank triangle is 
turned under and pasted to the corresponding blank triangle 
on the other side of the strip. All this is easier to carry out 
with a marked strip of paper than i t  is to describe. 

If you have made the folds properly, the triangles on one 
visible face of the hexagon are all numbered 1, and on the 

FIG.  2 .  
Hexahexaflexagon is constructed by cutting a strip of 
paper so that  i t  may be marked off in 19 triangles 
( A ) .  The triangles on one side are numbered 1, 2 and 

on the other, 4, 5 and 6. A similar 
or geometrical figures may also be 

used. The hexagon is then folded as  shown. The 
figure can be flexed to show six different faces. 



FIG.  3 . . 

Trihexaf lexagon i s  flexed by 
pinching together two of its tri-  
angles ( t o p ) .  The inner edge of 
the two opposite triangles may 
be opened with the other hand 
( b o t t o m ) .  If the figure cannot be 
opened, the adjacent pair of tri-  
angles is pinched. If the figure 
opens, i t  can be turned inside 
out, revealing a side tha t  was 
not visible before. 

other face all are numbered 2. Your hexahexaflexagon is 
now ready for flexing. You pinch two adjacent triangles 
together [see Fig. 31, bending the paper along the line be- 
tween them, and push in the opposite corner; the figure 
may then open up to face 3 or 5. By random flexing you 
should be able to find the other faces without much difficulty. 
Faces 4, 5 and 6 are a bit harder to uncover than 1 ,2 ,  and 3. 
At times you may find yourself trapped in an annoying cycle 
that keeps returning the same three faces over and over 
again. 

Tuckerman quickly discovered that the simplest way to 
bring out all the faces of any flexagon was to keep flexing 
it a t  the same corner until it refused to open, then to shift 
to an adjacent corner. This procedure, known as the "Tuck- 



6 Hexaflexagons 

erman traverse," will bring up the six faces of a hexahexa 
in a cycle of 12 flexes, but 1, 2 and 3 turn up three times as 
often as 4, 5 and 6. A convenient way to diagram a Tucker- 
man traverse is shown in Figure 4, the arrows indicating 
the order in which the faces are brought into view. This 
type of diagram can be applied usefully to the traversing of 
any type of flexagon. When the model is turned over, a 
Tuckerman traverse runs the same cycle in reverse order. 

F I G .  4 .  

Diagram of a Tuckerman traverse on a hexahexaflexagon 

By lengthening the chain of triangles, the committee dis- 
covered, one can make flexagons with 9 ,12,15 or more faces : 
Tuckerman managed to make a workable model with 48 ! He 
also found that  with a strip of paper cut in a zigzag pattern 
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( i .e . ,  a str ip with sawtooth rather than straight edges) i t  
was possible to produce a tetrahexaflexagon (four faces) or 
a pentahexaflexagon. There are three different hexahexa- 
flexagons- one folded from a straight strip, one from a chain 
bent into a hexagon and one from a form that  somewhat re- 
sembles a three-leaf clover. The decahexaflexagon (10 faces) 
has 82 different variations, all folded from weirdly bent 
strips. Flexagons can be formed with any desired number of 
faces, but beyond 10 the number of different species for each 
increases a t  an  alarming rate. All even-numbered flexagons, 
by the way, are made of strips with two distinct sides, but 
those with an  odd number of faces have only a single side, 
like a Moebius surface. 

A complete mathematical theory of flexigation was 
worked out in 1940 by Tukey and Feynman. I t  shows, among 
other things, exactly how to construct a flexagon of any de- 
sired size or species. The theory has never been published, 
though portions of i t  have since been rediscovered by other 
mathematicians. Among the flexigators is Tuckerman's 
father, the distinguished physicist Louis B. Tuckerman, who 
was formerly with the National Bureau of Standards. Tuck- 
erman senior devised a simple but efficient tree diagram 
for the theory. 

Pearl Harbor called a halt to the committee's flexigation 
program, and war work soon scattered the four charter 
members to the winds. Stone became a lecturer in mathe- 
matics at  the University of Manchester in England, and is 
now at  the University of Rochester, New York. Feynman 
was a famous theoretical physicist at  the California Institute 
of Technology. Tukey, a professor of matherrlatics at Prince- 
ton, has made brilliant contributions to topology and to sta- 
tistical theory which have brought him world-wide recog- 
nition. Tuckerman is a mathematician at IBM's research 
center in Yorktown Heights, New York. 
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One of these days the committee hopes to get together on 
a paper or two which will be the definitive exposition of 
flexagon theory. Until then the rest of us are free to flex our 
flexagons and see how much of the theory we can discover 
for ourselves. 

A D D E N D U M  

IN constructing flexagons from paper strips i t  is a good plan 
to crease all the fold lines back and forth before folding the 
model. As a result, the flexagon flexes much more efficiently. 
Some readers made more durable models by cutting tri- 
angles from poster board or metal and joining them with 
small pieces of tape, or by gluing them to one long piece of 
tape, leaving spaces between them for flexing. Louis Tuck- 
erman keeps on hand a steel strip of such size that by wrap- 
ping paper tape of a certain width around it he can quickly 
produce a folded strip of the type shown in Figure 2-B. This 
saves considerable time in making flexagons from straight 
chains of triangles. 

Readers passed on to me a large vai-iety of ways in which 
flexagon faces could be decorated to make interesting puz- 
zles or display striking visual effects. Each face of the hexa- 
hexa, for example, appears in a t  least two different forms, 
owing to a rotation of the component triangles relative to 
each other. Thus if we divide each face as  shown in Figure 
5, using different colors for the A, B and C sections, the 
same face may appear with the A sections in the center as 
shown, or with the B or C sections in the center. Figure 6 
shows how a geometrical pattern may be drawn on one face 
so as to appear in three different configurations. 

Of the 18 possible faces that  can result from a rotation 
of the triangles, three are impossible to achieve with a hexa- 
hexa of the type made from a straight strip. This suggested 



FIG.  5.  

to one correspondent the plan of pasting parts of three dif- 
ferent pictures on each face so that  by flexing the model 
properly, each picture could presumably be brought together 
a t  the center while the other two would be fragmented 
around the rim. On the three inner hexagons that  cannot be 
brought together, he pasted the parts of three pictures of 
comely, undraped young ladies to  make what he called a 
hexahexafrustragon. Another reader wrote that  he achieved 
similar results by pasting together two adjacent triangular 
faces. This prevents one entire face from flexing into view, 
although the victim can see that  i t  exists by peeking into the 
model's interior. 



The statement that only fifteen different patterns are pos- 
sible on the straight-strip hexahexa must be qualified. An 
unsymmetrical coloring of the faces discloses the curious 
fact that three of these fifteen patterns have mirror-image 
partners. If you number the inner corners of each pattern 
with digits from 1 to 6, writing them in clockwise order, you 
will find that three of these patterns turn up with the same 
digits in counterclockwise order. Bearing this asymmetry in 
mind, one can say that the six faces of this hexahexa exhibit 
a total of 18 different configurations. This was first called 
to my attention by Albert Nicholas, professor of education 
at  Monmouth College, Monmouth, Illinois, where the mak- 
ing of flexagons became something of a craze in the early 
months of 1957. 

I do not know who was the first to use a printed flexagon 
as an advertising premium or greeting card. The earliest 
sent to me was a trihexa distributed by the Rust Engineer- 
ing Company of Pittsburgh to advertise their service award 
banquet in 1955. A handsome hexahexa, designed to display 
a variety of colored snowflake patterns, was used by Scien- 
tific American for their 1956 Christmas card. 

For readers who would like to construct and analyze flex- 
agons other than the two described in the chapter, here is a 
quick run-down on some low-order varieties. 

1. The unahexa. A strip of three triangles can be folded 
flat and the opposite ends joined to make a Moebius strip 
with a triangular edge. (For a more elegant model of a Moe- 
bius band with triangular edge see Chapter 7.) Since it has 
one side only, made up of six triangles, one might call it a 
unahexaflexagon, though of course it isn't six-sided and it 
doesn't flex. 

2. The duahexa. Simply a hexagon cut from a sheet of 
paper. I t  has two faces but doesn't flex. 

3. The trihexa. This has only the one form described in 
this chapter. 
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4. The tetrahexa. This likewise has only one form. It is 
folded from the crooked strip shown in Figure 7-A. 

5. The pentahexa. One form only. Folded from the strip 
in Figure 7-B. 

6. The hexahexa. There are three varieties, each with 
unique properties. One of them is described in this chapter. 
The other two are folded from the strips pictured in Fig- 
ure 7-C. 

7. The heptahexa. This can be folded from the three strips 
shown in Figure 7-D. The first strip can be folded in two 
different ways, making four varieties in all. The third form, 
folded from the overlapping figure-8 strip, is the first of 
what Louis Tuckerman calls the "street flexagons." Its faces 
can be numbered so that a Tuckerman traverse will bring 
uppermost the seven faces in serial order, like passing the 
street numbers on a row of houses. 

The octahexa has 12 distinct varieties, the enneahexa has 
27, and the decahexa, 82. The exact number of varieties of 
each order can be figured in more than one way depending 
on how you define a distinct variety. For example, all flexa- 
gons have an asymmetric structure which can be right- 
handed or left-handed, but mirror-image forms should hard- 
ly be classified as different varieties. For details on the num- 
ber of nonequivalent hexaflexagons of each order, consult 
the paper by Oakley and Wisner listed in the bibliography. 

Straight chains of triangles produce only hexaflexagons 
with orders that are multiples of three. One variety of a 
twelve-faced hexa is particularly easy to fold. Star t  with a 
straight chain twice as long as  the one used for the hexahexa. 
"Roll" i t  into the form shown in Figure 2-B. The strip is now 
the same length as the one used for the hexahexa. Fold this 
rolled strip exactly as if you were making a hexahexa. Re- 
sult : a dodecahexaflexagon. 

In experimenting with higher-order flexagons, a handy 
rule t o  bear in mind is that the sum of the number of leaves 



FIG. 7. 
Crooked strips for folding hexaflexagons. The shaded triangles are 
tabs for pasting. 

RLLORENS



(thicknesses of paper) in two adjacent triangular sections 
always equals the number of faces. It is interesting to note 
also that  if each face of a flexagon is given a number or 
symbol, and the symbol marked on each triangular com- 
ponent, the order of symbols on the unfolded strip always 
exhibits a threefold symmetry. For example, the strip for 
the hexahexa in Figure 2 bears the following top and bot- 
tom pattern of digits : 

A triple division similar to this is characteristic of all 
hexahexaflexagons, although on models of odd order one of 
the three divisions is always inverted. 

Of the hundreds of letters received about flexagons, the 
following two were the most amusing. They appeared in the 
March and May issues of Scientific American, 1957. 

SIRS : 
I was  quite taken w i t h  the article entitled "Flexagons" in 

your December issue. I t  took u s  only s ix  or seven hours to  
paste the hexahexaflexagon together in the proper configur- 
ation. Since then  it has been a source of continuing wonder. 

But  w e  have a problem. This  morning one of our fellows 
was  sitting flexing the hexahexaflexagon idly when  the t ip  
of his necktie became caught in one o f  the folds. W i t h  each 
successive flex, more of his tie vanished into the flexagon. 
W i t h  the s ix th  flexing he disappeared entirely. 

W e  have been flexing the  thing madly,  and can find no 
trace o f  h im,  but w e  have located a sixteenth configuration 
o f  the hexahexaflexagon. 

Here i s  our question: Does his widow draw workmen's 



compensation for  the duration o f  his absence, or can we  have 
h i m  declared legally dead immediately? W e  await your ad- 
vice. 

NEIL TJPTEGROVE 
Allen B. Du Mont Laboratories, Znc. 
Clifton, N.J. 

SIRS : 
The letter in the March issue of your magazine complain- 

ing o f  the disappearance of a fellow f r o m  the Allen B. Du 
Mont Laboratories "down" a hexahexaflexagon, has solved 
a mys tery  for us. 

One day, while idly flexing our latest hexahexaflexagon, 
w e  were confounded to find that i t  was producing a strip o f  
multicolored material. Further flexing of the hexahexaflexa- 
gon finally disgorged a gum-chewing stranger. 

Unfortunately he was in a weak state and, owing to a n  
apparent loss o f  memory,  unable t o  give any account o f  how 
he came to be w i t h  us. His health has now been restored on 
our national diet o f  porridge, haggis and whisky ,  and he has 
become quite a pet around the department,  answering to the 
name o f  Eccles. 

Our problem is ,  should w e  now return h i m  and, i f  so, by 
what  method? Unfortunately  Eccles now cringes at the very 
sight of a hexahexaflexagon and absolutely refuses to "flex." 

ROBERT M. HILL 
The  Royal College o f  Science and Technology 
Glasgow, Scotland 



C H A P T E R  T W O  

Magic with a Matrix 

M AGIC SQUARES have intrigued mathematicians for 
more than 2,000 years. In the traditional form the 

square is constructed so that the numbers in each row, each 
column and each diagonal add up to the same total. How- 
ever a magic square of an entirely different type is pictured 
in Figure 8. This square seems to have no system: the num- 
bers appear to be distributed in the matrix a t  random. 
Nevertheless the square possesses a magical property as as- 
tonishing to most mathematicians as it is to laymen. 

A convenient way to demonstrate this property is to equip 
yourself with five pennies and 20 little paper markers (say 
pieces of paper matches). Now ask someone to pick any 
number in the square. Lay a penny on this number and elim- 
inate all the other numbers in the same row and in the 
same column by covering them with markers. 

Ask your spectator to pick a second number by pointing 
to any uncovered cell. As before, put a penny on this number 
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F I G .  8.  

and cover all the others in the same row and column. Repeat 
this procedure twice more. One uncovered cell will remain. 
Cover it with the fifth penny. 

When you add the five numbers beneath the pennies- 
numbers chosen seemingly a t  random- the total is certain 
to be 57. This is no accident. The total will be the same with 
every repetition of the experiment. 

If you enjoy solving mathematical puzzles, you may wish 
to pause a t  this point to analyze the square and see if you 
can discover its secret yourself. 
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Like most tricks, this one is absurdly simple when ex- 
plained. The square is nothing more than an old-fashioned 
addition table, arranged in a tricky way. The table is gen- 
erated by two sets of numbers: 12, 1, 4, 18, 0 and 7, 0, 4, 9, 
2. The sum of these numbers is 57. If you write the first set 
of numbers horizontally above the top row of the square, 
and the second set vertically beside the first column [see Fig. 
91, you can see a t  once how the numbers in the cells are de- 
termined. The number in the first cell (top row, first col- 
umn) is the sum of 12 and 7, and so on through the square. 

You can construct a magic square of this kind as large as 
you like and with any combination of numbers you choose. 
It does not matter in the least how many cells the square 
contains or what numbers are used for generating it. They 
may be positive or negative, integers or fractions, rationals 
or irrationals, The resulting table will always possess the 
magic property of forcing a number by the procedure de- 
scribed, and this number will always be the sum of the two 
sets of numbers that  generate the table. In the case given 
here you could break the number 57 into any eight numbers 
that  add up to that  sum. 

The underlying principle of the trick is now easy to see. 
Each number in the square represents the sum of a pair of 
numbers in the two generating sets. That particular pair is 
eliminated when a penny is placed on the number. The pro- 
cedure forces each penny to lie in a different row and col- 
umn. Thus the five pennies cover the sums of five different 
pairs of the ten generating numbers, which is  the same as 
the sum of all ten numbers. 

One of the simplest ways to form an addition table on a 
square matrix is to start  with 1 in the upper left corner, 
then continue from left to  right with integers in serial or- 
der. A four-by-four matrix of this sort becomes an addition 
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12 1 4 18 0 

F I G .  9 .  

table for the two sets of numbers 1, 2, 3, 4 and 0, 4, 8, 12 
[Fig. 101. This matrix will force the number 34. 

The forced number is of course a function of the size of 
the square. If n is the number of cells on a side, then the 
forced number will be 

n3 + n 
2 

On squares with an odd number of cells on the side, this 
forced number will equal the product of n and the number 
on the center cell. 

If you start  with a number higher than 1 (call i t  a)  and 
continue in serial order, the forced number will be 

I t  is interesting to note that the forced number is the 
same as the total of each row and column on a traditional 
magic square that is formed from the same numerical ele- 
ments. 

By means of the second formula, it is easy to calculate the 
starting number for a matrix of any desired size that will 
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1 2 3 4 

F I G .  10. 

force any desired number. An impressive impromptu stunt 
is to ask someone to give you a number above 30 (this is 
specified to avoid bothersome minus numbers in the matrix), 
then proceed to draw quickly a four-by-four matrix that 
will force that number. (Instead of using pennies, a faster 
procedure is to let the spectator circle each chosen number, 
then draw a line through its row and column.) 

The only calculation you need make (i t  can be done in 
your head) is to subtract 30 from the number he names, 
then divide by four. For example, he calls out 43. Subtract- 
ing 30 gives 13. Dividing 13 by 4 results in 3%. If you put 
this number in the first cell of a four-by-four matrix, then 
continue in serial order with 4%, 5% . . . , you will produce 
a magic square that will force 43. 

To make the square more baffling, however, the order of the 
numbers should be scrambled. For instance, you might put 
the first number, 3%, in a cell in the third row as  shown 
in Figure 11, and the next three numbers (41h, 51h, and 
6%)  in the same row in a random order. Now you may 
write the next four numbers in another row (i t  does not 
matter which), but they must be in the same cell sequence 
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FIG.  1 1 .  

you followed before. Do exactly the same with the last two 
rows. The final result will be something like the square 
shown in Figure 12. 

If you want to avoid fractions and still force the number 
43, you can drop the 1/4, after all the numbers and add 1 to 
each of the four highest whole numbers, making them 16, 
17, 18 and 19. Similarly you would add 2 to these numbers 
if the fraction were %, or 3 if i t  were 3/4 .  

F I G .  12.  
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Interchanging the order of rows or columns has no effect 
on the square's magic property, and by scrambling the cells 
in this manner you make the matrix appear much more 
mysterious than i t  really is. 

Multiplication tables may also be used to force a number. 
In  this case the chosen numbers must be multiplied instead 
of added. The final product will equal the product of the 
numbers used to generate the table. 

I have not been able to discover who first applied this de- 
lightful property of addition and multiplication tables to a 
trick. A parlor stunt with numbered cards, based on the 
principle, was published by Maurice Kraitchik on page 184 
of his Mathematical Recreations, 1942. This is the earliest 
reference I have found to the principle. Since 1942 several 
mathematically inclined conjurers have introduced variations 
on the theme. For  instance, Me1 Stover of Winnipeg ob- 
served that  if you draw a square around 16 numbers on any 
calendar page, the square forms an addition table which 
forces a number twice the sum of the two numbers a t  either 
of the diagonally opposite corners. 

The use of playing cards also opens up colorful possi- 
bilities. For example, is i t  possible to arrange a deck so that  
i t  can be cut and a square array of cards dealt from the cut 
that  will always force the same number? The principle is 
relatively unexplored and may have many curious ramifica- 
tions yet to be discovered. 

A D D E N D U M  

STEWART JAMES, a magician in Courtright, Ontario, devised 
a novel variation of the magic square in which one can force 
any desired word on an  audience. Suppose you wish to force 
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the word JAMES. You form a square of 25 cards, the under- 
sides of which (unknown to anyone but you) bear letters 
as follows: 

J A M E S  
J A M E S  
J A M E S  
J A M E S  
J A M E S  

Someone is asked to pick one of the cards by touching its 
back. This card is placed aside, without showing its face, and 
all other cards in the same row and column are removed. 
This procedure is repeated three more times, then the one 
remaining card is placed with the other four that have been 
selected. The five cards are then turned over and arranged 
to spell JAMES. The procedure makes i t  impossible, of course, 
for the five selected cards to include duplicates. 

One reader wrote that  he found the magic square an in- 
triguing curiosity to draw on birthday cards for mathe- 
matically-minded friends. The recipient follows instructions, 
adds his chosen numbers, and is startled to find that  the 
total is his age. 



C H A P T E R  T H R E E  

Nine Problems 

1 .  THE R E T U R N I N G  EXPLORER 

AN OLD RIDDLE runs as  follows. An explorer walks one mile 
due south, turns and walks one mile due east, turns again 
and walks one mile due north, He finds himself back where 
he started. He shoots a bear. What color is the bear? The 
time-honored answer is: "White," because the explorer 
must have started a t  the North Pole. But not long ago some- 
one made the discovery that  the North Pole is not the only 
starting point that  satisfies the given conditions! Can you 
think of any other spot on the globe from which one could 
walk a mile south, a mile east, a mile north and find himself 
back a t  his original location? 

2 .  D R A W  POKER 

Two MEN PLAY a game of draw poker in the following curi- 
ous manner. They spread a deck of 52 cards face up on the 
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table so that  they can see all the cards. The first player 
draws a hand by picking any five cards he chooses. The sec- 
ond player does the same. The first player now may keep his 
original hand or draw up to five cards. His discards are  put 
aside out of the game. The second player may now draw like- 
wise. The person with the higher hand then wins. Suits have 
equal value, so that  two flushes tie unless one is made of 
higher cards. After a while the players discover that  the 
first player can always win if he draws his first hand cor- 
rectly. What hand must this be? 

3 .  THE M U T I L A T E D  C H E S S B O A R D  

THE PROPS FOR this problem are a chessboard and 32 domi- 
noes. Each domino is of such size that  i t  exactly covers two 
adjacent squares on the board. The 32 dominoes therefore 
can cover all 64 of the chessboard squares. But now suppose 
we cut off two squares a t  diagonally opposite corners of the 
board [see Fig. 131 and discard one of the dominoes. Is  i t  
possible to place the 31 dominoes on the board so that  all the 
remaining 62 squares are covered? If so, show how it  can be 
done. If not, prove i t  impossible. 

FIG.  13 .  
The mutilated chessboard. 
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4 .  THE F O R K  I N  THE R O A D  

HERE'S A RECENT twist on an old type of logic puzzle. A 
logician vacationing in the South Seas finds himself on an 
island inhabited by the two proverbial tribes of liars and 
truth-tellers. Members of one tribe always tell the truth, 
members of the other always lie. He comes to a fork in a 
road and has to ask a native bystander which branch he 
should take to reach a village. He has no way of telling 
whether the native is a truth-teller or a liar. The logician 
thinks a moment, then asks one question only. h o r n  the 
reply he knows which road to take. What question does he 
ask ? 

5 .  SCRAMBLED B O X  TOPS 

IMAGINE THAT YOU have three boxes, one containing two 
black marbles, one containing two white marbles, and the 
third, one black marble and one white marble. The boxes were 
labeled for their contents- BB, WW and BW- but someone 
has switched the labels so that every box is now incorrectly 
labeled. You are allowed to take one marble a t  a time out of 
any box, without looking inside, and by this process of Sam- 
pling you are to determine the contents of all three boxes. 
What is the smallest number of drawings needed to do this? 

6 .  B R O N X  vs. B R O O K L Y N  

A YOUNG MAN lives in Manhattan near a subway express 
station. He has two girl friends, one in Brooklyn, one in The 
Bronx. To visit the girl in Brooklyn he takes a train on the 
downtown side of the platform; to visit the girl in The 
Bronx he takes a train on the uptown side of the same plat- 
form. Since he likes both girls equally well, he simply takes 
the first train that comes along. In this way he lets chance 
determine whether he rides to The Bronx or to Brooklyn. The 
young man reaches the subway platform a t  a random mo- 
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ment each Saturday afternoon. Brooklyn and Bronx trains 
arrive a t  the station equally often- every 10 minutes. Yet 
for some obscure reason he finds himself spending most of 
his time with the girl in Brooklyn: in fact on the average 
he goes there nine times out of ten. Can you think of a good 
reason why the odds so heavily favor Brooklyn? 

7 .  C U T T I N G  T H E  C U B E  

A CARPENTER, working with a buzz saw, wishes to cut a 
wooden cube, three inches on a side, into 27 one-inch cubes. 
He can do this easily by making six cuts through the cube, 
keeping the pieces together in the cube shape [see Fig. 141. 
Can he reduce the number of necessary cuts by rearranging 
the pieces after each cut? 

8 .  THE EARLY C O M M U T E R  

A COMMUTER I S  in the habit of arriving a t  his suburban sta- 
tion each evening exactly a t  five o'clock. His wife always 
meets the train and drives him home. One day he takes an 
earlier train, arriving a t  the station a t  four. The weather is 
pleasant, so instead of telephoning home he starts  walking 
along the route always taken by his wife. They meet some- 
where on the way. He gets into the car and they drive home, 
arriving a t  their house ten minutes earlier than usual. As- 
suming that  the wife always drives a t  a constant speed, and 
that  on this occasion she left just in time to meet the five 
o'clock train, can you determine how long the husband 
walked before he was picked up? 

9 .  THE C O U N T E R F E I T  C O I N S  

I N  RECENT YEARS a number of clever coin-weighing or ball- 
weighing problems have aroused widespread interest. Here 
is a new and charmingly simple variation. You have 10 
stacks of coins, each consisting of 10 half-dollars [see Fig. 
151. One entire stack is counterfeit, but you do not know 
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F I G .  14 .  
The sliced cube. (above) .  

FIG.  1 5 .  
The counterfeit coins. (Le f t )  

which one. You do know the weight of a genuine half-dollar 
and you are also told that each counterfeit coin weighs one 
gram more than it should. You may weigh the coins on a 
pointer scale. What is the smallest number of weighings 
necessary to determine which stack is counterfeit? 

A N S W E R S  

1. Is  there any other point on the globe, besides the North 
Pole, from which you could walk a mile south, a mile east, 
and a mile north and find yourself back a t  the starting 
point? Yes indeed; not just one point but an infinite num- 
ber of them! You could start  from any point on a circle 
drawn around the South Pole a t  a distance slightly more 
than 1 + 1 / 2 ~  miles (about 1.16 miles) from the Pole- the 
distance is "slightly more" to take into account the curvature 
of the earth. After walking a mile south, your next walk of 
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one mile east will take you on a complete circle around the 
Pole, and the walk one mile north from there will then re- 
turn you to the starting point. Thus your starting point 
could be any one of the infinite number of points on the 
circle with a radius of about 1.16 miles from the South Pole. 
But this is not all. You could also start  a t  points closer to the 
Pole, so that the walk east would carry you just twice 
around the Pole, or three times, and so on. 

2. There are 88 winning first hands. They fall into two 
categories: (1) four tens and any other card (48 hands) ; 
(2) three tens and any of the following pairs from the suit 
not represented by a ten:  A-9, K-9, Q-9, J-9, K-8, Q-8, J-8, 
Q-7, 5-7, J-6 (40 hands). The second category was called to 
my attention by two readers: Charles C. Foster of Prince- 
ton, New Jersey, and Christine A, Peipers of New York. I 
have never seen these hands included in any previously pub- 
lished answer to the problem. 

3. I t  is impossible to cover the mutilated chessboard (with 
two opposite corner squares cut off) with 31 dominoes, and 
the proof is easy. The two diagonally opposite corners are 
of the same color. Therefore their removal leaves a board 
with two more squares of one color than of the other. Each 
domino covers two squares of opposite color, since only op- 
posite colors are adjacent. After you have covered 60 squares 
with 30 dominoes, you are left with two uncovered squares 
of the same color. These two cannot be adjacent, therefore 
they cannot be covered by the last domino. 

4. If we require that  the question be answerable by "yes" 
or  "no," there are  several solutions, all exploiting the same 
basic gimmick. For example, the logician points to one of the 
roads and says to the native, "If I were to ask you if this 
road leads to the village, would you say 'yes'?" The native is 
forced to  give the right answer, even if he is a liar! If the 
road does lead to the village, the liar would say "no" to the 
direct question, but as the question is put, he lies and says 
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he would respond "yes." Thus the logician can be certain 
that  the road does lead to  the village, whether the respond- 
ent is a truth-teller or a liar. On the other hand, if the road 
actually does not go to the village, the liar is forced in the 
same way to reply "no'' to the inquirer's question. 

A similar question would be, "If I asked a member of the 
other tribe whether this road leads to the village, would he 
say 'yes'?" To avoid the cloudiness that results from a ques- 
tion within a question, perhaps this phrasing (suggested by 
Warren C. Haggstrom, of Ann Arbor, Michigan) is best: 
"Of the two statements, 'You are a liar' and 'This road leads 
to the village,' is one and only one of them true?" Here 
again, a "yes" answer indicates i t  is the road, a "no" an- 
swer that  i t  isn't, regardless of whether the native lies or 
tells the truth. 

Dennis Sciama, Cambridge University cosmologist, and 
John McCarthy of Hanover, New Hampshire, called my at- 
tention to a delightful additional twist on the problem. "Sup- 
pose," Mr. McCarthy wrote (in a letter published in Scien- 
tific American, April 1957), "the logician knows that 'pish' 
and 'tush' are the native words for 'yes' and 'no' but has 
forgotten which is which, though otherwise he can speak the 
native language. He can still determine which road leads to 
the village. 

"He points to one of the roads and asks, 'If I asked you 
whether the road I am pointing to is the road to the village 
would you say pish?' If the native replies, 'Pish,' the logi- 
cian can conclude that  the road pointed to is the road to the 
village even though he will still be in the dark as to whether 
the native is a liar or a truth-teller and as to whether 'pish' 
means yes or no. If the native says, 'Tush,' he may draw 
the opposite conclusion." 

H. Janzen of Queens University, Kingston, Ontario, and 
several other readers informed me that if the native's an- 
swer does not have to be "yes" or "no," there is a question 
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which reveals the correct road regardless of how many 
roads meet a t  the intersection. The logician simply points 
to all the roads, including the one he has just traveled, and 
asks, "Which of these roads leads to the village?" The truth- 
teller points to the correct one, and the liar presumabIy 
points to all the others. The logician could also ask, "Which 
roads do not lead to the village?" In  this case the liar would 
presumably point only to the correct one. Both cases, how- 
ever, are somewhat suspect. In the first case the liar might 
point to only one incorrect road and in the second case he 
might point to several roads. These responses would be lies 
in a sense, though one would not be the strongest possible 
lie and the other would contain a bit of truth. 

The question of how precisely to define "lying" enters of 
course even into the previous yes and no solutions. I know 
of no better way to make this clear than by quoting in full 
the following letter which Scientific American received from 
Willison Crichton and Donald E. Lamphiear, both of Ann 
Arbor, Michigan. 

I t  i s  a sad commentary on the rise o f  logic that it leads t o  
the decay of the art  o f  lying. Even  among liars, the life of 
reason seems to  be gaining ground over the better li fe.  W e  
refer  to  puzzle number 4 in the February issue, and i t s  solu- 
tion. I f  we  accept the proposed solution, w e  must  believe 
that liars can always be made the dupes o f  their ozun prin- 
ciples, a situation, indeed, zuhich is  bound to arise whenever 
lying takes the form o f  slavish adherence to arbitrary rules. 

For the anthropologist to  say t o  the native, " I f  I were t o  
ask you if this road leads to the village, would you say 
'yes'?" expecting h im  to interpret the question as counter- 
factual conditional in meaning as well as form,  presupposes 
a certain preciosity on the part o f  the native. I f  the anthro- 
pologist asks the question casually, the native is  almost cer- 
tain to mistake the odd phraseology for  some civility of man- 
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n e r  taught  in W e s t e r n  democracies, and anszoer as  i f  the  
question were s imply ,  "Does this  road lead t o  the  village?" 
O n  the other hand,  i f  he fixes h i m  w i t h  a glittering eye in 
order t o  emphasize the  logical in ten t  o f  the  question, he also 
reveals i t s  purpose, arousing the native's suspicion tha t  he 
i s  being tricked. T h e  nat ive ,  i f  he is  zoorthy the  n a m e  o f  
liar, zoill pursue a method o f  counter-trickery,  leaving the  
anthropologist mis informed.  O n  this  latter v iew,  the  pro- 
posed solution i s  inadequate,  but even in t e r m s  o f  strictly 
formal  lying, i t  i s  fau l ty  because of i t s  ambigui ty .  

T h e  investigation of unambiguous solutions leads u s  t o  a 
more detailed analysis of the  nature o f  lying. T h e  traditional 
definition employed b y  logicians i s  tha t  a liar i s  one zoho al- 
w a y s  says zohat i s  false. T h e  ambigui ty  of th i s  definit ion 
appears w h e n  toe t r y  to  predict ?(.hat a liar zoill anszoer t o  a 
compound t r u t h  functional question, such as,  " I s  it true tha t  
i f  this  i s  the  7cay to tozcn, you are a liar?" Wi l l  he evaluate 
the  t w o  components correctly in order to  evaluate the  func-  
t ion  and reverse his evaluation in the  telling, or zoill he fol- 
lozo the  impartial policy o f  lying to  himsel f  as  z~lell as to  
others,  reversing the evaluation of each component before 
computing the value of the  fzinction, and t h e n  reversing the 
computed value o f  the  function? Here zoe distinguish the  
simple liar w h o  alzoays u t t ers  what  i s  s imply  false f r o m  the 
honest liar w h o  alzoays u t t ers  the  logical dual o f  the  t ru th .  

T h e  question, " I s  i t  t rue tha t  i f  this  i s  the  w a y  t o  tozon, 
you are a liar?" i s  a solution i f  our liars are honest liars. 
T h e  honest liar and the truth-teller both answer  "yes" i f  
the  indicated road i s  not  the  zoay t o  tozcn, and "no" if it is.  
T h e  simple liar, however,  zoill anszoer "no" regardless o f  
zohere the  village is.  B y  substituting equivalence f o r  implica- 
t ion w e  obtain a solution which  w o r k s  f o r  both simple and 
honest liars. T h e  question becomes, " I s  it true that  th is  i s  
the  zoay t o  tozon if and only i f  you are a liar?" T h e  anszc3er 
i s  un i formly  "no" i f  i t  i s  the  w a y ,  and "yes" i f  i t  i s  no t .  
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But  no  lying primitive savage could be expected to display 
the scrupulous consistency required by  these conceptions, 
nor would any liar capable o f  such acumen be so easily out- 
witted. W e  must  therefore consider the case o f  the artistic 
liar whose principle i s  alzvays t o  deceive. Against such a n  
opponent the anthropologist can only hope to maximize the 
probability o f  a favorable outcome. N o  logical question can 
be a n  infallible solution, for  if the liar's principle i s  to  de- 
ceive, he will counter w i t h  a strategy o f  deception which 
circumvents logic. Clearly the essential feature o f  the an- 
thropologist's strategy mus t  be i t s  psychological soundness. 
Such  a strategy is  admissible since i t  is  even more ef fect ive 
against the honest and the simple liar than  against the more 
refractory artistic liar. 

W e  therefore propose as the most general solution the 
following question or i t s  moral equivalent, "Did you knozv 
that  they are serving free beer in the village?" The  truth-  
teller anszuers "no" and immediately sets o f  for  the village, 
the  anthropologist follozuing. The  simple or honest liar an- 
swers "yes" and sets o f f  for  the village. The  artistic liar, 
making the polite assumption that the anthropologist is  also 
devoted to trickery, chooses his strategy accordingly. Con- 
fronted w i t h  two  contrary motives, he m a y  pursue the 
chance o f  satisfying both o f  t hem by answering, "Ugh! I 
hate beer!" and starting fo r  the village. This  zvill not con- 
fuse a good anthropologist. But  if the liar sees through the 
ruse, he will recognize the inadequacy o f  this  response. He 
may  then  make the supreme sacrifice for the sake o f  art and 
start down the wrong road. He achieves a technical victory, 
but even so, the anthropologist m a y  claim a moral victory, 
for  the liar is  punished by  the gnawing suspicion that he 
has missed some free beer. 

5. You can learn the contents of all three boxes by draw- 
ing just one marble. The key to the solution is your knowl- 
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edge that  the labels on all three of the boxes are incorrect. 
You must draw a marble from the box labeled "black-white," 
Assume that  the marble drawn is black. You know then that  
the other marble in this box must be black also, otherwise 
the label would be correct. Since you have now identified the 
box containing two black marbles, you can a t  once tell the 
contents of the box marked "white-white" : you know it  can- 
not contain two white marbles, because its label has to be 
wrong; i t  cannot contain two black marbles, for you have 
identified that box; therefore i t  must contain one black and 
one white marble. The third box, of course, must then be the 
one holding two white marbles. You can solve the puzzle by 
the same reasoning if the marble you draw from the "black- 
white" box happens to be white instead of black. 

6. The answer to this puzzle is a simple matter of train 
schedules. While the Brooklyn and Bronx trains arrive 
equally often- a t  10-minute intervals- i t  happens that  
their schedules are such that  the Bronx train always comes 
to this platform one minute after the Brooklyn train. Thus 
the Bronx train will be the first to arrive only if the young 
man happens to come to the subway platform during this 
, one-minute interval. If he enters the station a t  any other 

time- i.e., during a nine-minute interval- the Brooklyn 
train will come first. Since the young man's arrival is ran- 
dom, the odds are nine to one for Brooklyn. 

7 .  There is no way to reduce the cuts to fewer than six. 
This is a t  once apparent when you focus on the fact that a 
cube has six sides. The saw cuts straight- one side a t  a 
time. To cut the one-inch cube a t  the center (the one which 
has no exposed surfaces to start  with) must take six passes 
of the saw. 

This problem was originated by Frank Hawthorne, super- 
visor of mathematics education, State Department of Edu- 
cation, Albany, New York, and first published in Mathemat- 
ics Magazine, Sept.-Oct., 1950 (Problem Q-12). 
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Cubes of 2 x 2 x 2 and 3 x 3 x 3 are  unique in the sense 
that regardless of how the pieces are  rearranged before each 
cut (provided each piece is cut somewhere), the former will 
always require three cuts and the latter six to slice into unit 
cubes. 

The 4 x 4 x 4 cube requires nine cuts if the pieces are  
kept together as  a cube, but by proper piling before each cut, 
the number of cuts can be reduced to six. If a t  each piling 
you see that  every piece is cut as  nearly in half as  pos- 
sible, the minimum number of cuts will be achieved. In gen- 
eral, for  an  n x n x n cube, the minimum number of cuts is 
3k where k is defined by 

This general problem was posed by L. R. Ford, Jr . ,  and 
D. R. Fulkerson, both of The Rand Corporation, in the 
A m e r i c a n  Mathematical Month ly ,  Aug.-Sept., 1957 (Prob- 
lem E1279), and answered in the March 1958 issue. The 
problem is a special case of a more general problem (the 
minimum cuts for slicing an a x b x c block into unit cubes) 
contributed by Leo Moser, of the University of Alberta, to 
Mathemat ics  Magazine,  Vol. 25, March-April, 1952, p. 219. 

Eugene J. Putzer and R. W. Lowen generalized the prob- 
lem still further in a research memorandum, "On the Opti- 
mum Method of Cutting a Rectangular Box into Unit 
Cubes," issued in 1958 by Convair Scientific Research Lab- 
oratory, San Diego. The authors considered blocks of n-di- 
mensions, with integral sides, which are  to be sliced by a 
minimum number of planar cuts into unit hypercubes. In  
three dimensions the problem is one which the authors feel 
might "have important applications in the cheese and sugar- 
loaf industries." 

8. The commuter has walked for 55 minutes before his 
wife picks him up. Since they arrive home 10 minutes ear- 
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lier than usual, this means that  the wife has chopped 10 
minutes from her usual travel time to and from the station, 
or five minutes from her travel time to the station. It fol- 
lows that  she met her husband five minutes before his usual 
pick-up time of five o'clock, or a t  4:55. He started walking 
a t  four, therefore he walked for 55 minutes. The man's 
speed of walking, the wife's speed of driving and the dis- 
tance between home and station are not needed for solving 
the problem. If you tried to solve i t  by juggling figures for 
these variables, you probably found the problem exasperat- 
ing. 

When this problem was presented in Scientific American 
i t  was unfortunately worded, suggesting that the wife ha- 
bitually arrived early a t  the station and waited for the five- 
o'clock train. If this is the case, the husband's walking time 
lies within a range of 50 to 55 minutes. 

A number of readers pointed out that  the problem yields 
readily to solution by what Army logisticians call a "march 
graph" [see Fig. 161. Time is plotted on the horizontal axis, 
distance on the vertical. The graph shows clearly that the 
wife could leave home up to ten minutes earlier than the 
leaving time required to just meet the train. The lower limit 
(50 minutes) of her husband's walking time can occur only 
when the wife leaves a full ten minutes earlier and either 
drives habitually a t  infinite speed (in which case her hus- 
band arrives home a t  the same moment she leaves), or the 
husband walks a t  an infinitesimal speed (in which case she 
meets him a t  the station after he has walked 50 minutes and 
gotten nowhere). "Neither image rings false," wrote David 
W. Weiser, assistant professor of natural science a t  the Uni- 
versity of Chicago, in one of the clearest analyses I received 
of the problem, "considering the way of a wife with a car, 
or of a husband walking past a tavern." 

9. The counterfeit stack can be identified by a single weigh- 
ing of coins. You take one coin from the first stack, two 
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from the second, three from the third and so on to the entire 
10 coins of the tenth stack. You then weigh the whole sam- 
ple collection on the pointer scale. The excess weight of this 
collection, in number of grams, corresponds to the num- 
ber of the counterfeit stack. For example, if the group of 
coins weighs seven grams more than i t  should, then the 
counterfeit stack must be the seventh one, from whidh you 
took seven coins (each weighing one gram more than a 
genuine half-dollar). Even if there had been an eleventh 
stack of ten coins, the procedure just described would still 
work, for no excess weight would indicate that  the one re- 
maining stack was counterfeit. 

F I G .  16.  

Graph of the commuter. problem. 



C H A P T E R  F O U R  

Ticktacktoe 

W HO HAS NOT as  a child played ticktacktoe, that 
most ancient and universal struggle of wits of which 

Wordsworth wrote (Prelude,  Book I)  : 

At evening,  w h e n  w i t h  pencil, and smooth  slate 
I n  square divisions parcelled out  and all 
W i t h  crosses and w i t h  cyphers  scribbled o'er, 
W e  schemed and puzzled, head opposed t o  h e a d ,  
I n  s t r i f e  too humble  t o  be named  in verse.  

At first sight i t  is not easy to understand the enduring 
appeal of a game which seems no more than child's play. 
While it is true that even in the simplest version of the game 
the number of possible moves is very large- 15,120 (9 X 8 X 

7 X 6 X 5) different sequences for the first five moves alone- 
there are really only a few basic patterns, and any astute 
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youngster can become an unbeatable player with only an 
hour or so of analysis of the game. But ticktacktoe also has 
its more complex variations and strategic aspects. 

In the lingo of game theory, ticktacktoe is a two-person 
contest which is "finite" (comes to a definite end),  has no 
element of chance and is played with "perfect information," 
all moves being known to both players. If played "ration- 
ally" by both sides, the game must end in a draw. The only 
chance of winning is to catch an unwary opponent in a 
"trap" where a row can be scored on the next move in two 
ways, only one of which can be blocked. 

Of the three possible opening plays- a corner, the center 
or a side box- the strongest opening is the corner, because 
the opponent can avoid being trapped a t  the next move only 
by one of the eight possible choices: the center. Conversely, 
center opening traps can be blocked only by seizing a cor- 
ner. The side opening, in many ways the most interesting 
because of its richness in traps on both sides, must be met 
by taking one of four cells. The three openings and the pos- 
sible responses by a second player who plays rationally are 
diagramed in Figure 17. 

Variants of ticktacktoe more exciting mathematically 
than the present form were played many centuries before 

FIG.  17.  
The first player ( X )  has a choice of three openings. To avoid losing, 
second player ( 0 )  must choose one of the cells indicated. 
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FIG.  18 .  
Ticktacktoe with moving counters. 

the Christian era. All of them employ six counters and can 
be played on the board pictured in Figure 18- one player 
using three pennies, the other, three dimes. In the simplest 
form, popular in ancient China, Greece and Rome, players 
take turns placing a counter on the board until all six are 
down. If neither player has won by getting three in a row 
(orthogonally or diagonally) they continue playing by mov- 
ing on each turn a single counter to any adjacent square. 
Only moves along the orthogonals are permitted. 

Ovid mentions this game in Book I11 of his Art of Love, 
including it among a group of games which he advises a 
woman to master if she wishes to be popular with men. The 
game was common in England in 1300 when it  was called 
"three men's morris," the ancestor of nine, eleven, and 
twelve men's morris, or "mill" as it is usually called in the 
United States today. Since the first player has a sure win by 
playing first in the center, this opening is usually barred. 
With this restriction the game is a draw if played ration- 
ally, but i t  swarms with potential traps on both sides. 

A variation of this game permits moves to neighboring 
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cells along the two main diagonals of the square. A further 
extension (attributed to early American Indians) allows any 
counter to move one step in any direction, orthogonally or 
diagonally (e.g., a move can be made from cell 2 to cell 4 ) .  
In  the first version the initial player can still force a win if 
allowed to open on the center, but the second variant is prob- 
ably a draw. A free-wheeling version called les pendus (the 
hanged) in France, permits any piece to be moved to any 
vacant cell. This also is believed drawn if played rationally. 

Many variations of moving-counter ticktacktoe have been 
applied to 4 x 4 boards, each player using four counters and 
striving to get four in a row. A few years ago magician John 
Scarne marketed an interesting 5 x 5 version called "teeko." 
Players take turns placing four counters each, then alter- 
nate with one-unit moves in any direction. A player wins by 
getting four in a row, orthogonally or diagonally, or in a 
square formation on four adjacent cells. 

Many delightful versions of ticktacktoe do not, however, 
make use of moving counters. For example: toetacktick (a 
name supplied by reader Mike Shodell, of Great Neck, New 
York).  This is played like the usual game except that  the 
first player to get three in a row loses. The second player has 
a decided advantage. The first player can force a draw only 
if he plays first in the center. Thereafter, by playing sym- 
metrically opposite the second player, he can insure the draw. 

In recent years several three-dimensional ticktacktoe 
games have been marketed. They are  played on cubical 
boards, a win being along any orthogonal or diagonal row 
as  well as on the four main diagonals of the cube. On a 3 x 
3 x 3 cube the first player has an easy win. Curiously, the 
game can never end in a draw because the first player has 
fourteen plays and i t  is impossible to make all fourteen of 
them without scoring. The 4 x 4 x 4 cube leads to more in- 
teresting play and may or may not be a draw if played 
rationally. 
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Other ways of playing on cubes have been proposed. Alan 
Barnert of New York suggests defining a win as  a square 
array of counters on any of the orthogonal planes as  well as  
on the six main diagonal planes. Price Parks and Robert 
Satten, while students a t  the University of Chicago in 1941, 
devised an interesting 3 x 3 x 3 cubical game in which one 
wins by forming two intersecting rows. The winning move 
must be on the point of intersection. Because an  early move 
into the center cubicle insures a win, this move is barred 
unless it is a winning move or necessary to block an oppon- 
ent from winning on his next move. 

Four-dimensional ticktacktoe can be played on an imagi- 
nary hypercube by sectioning i t  into two-dimensional squares. 
A 4 x 4 x 4 x 4 hypercube, for example, would be diagramed 
as shown in Figure 19. On this board a win of four in a row 
is achieved if four marks are in a straight line on any cube 
that  can be formed by assembling four squares in serial or- 
der along any orthogonal or either of the two main diag- 
onals. Figure 20 shows a win on such an assembled cube. 
The first player is believed to have a sure win, but the game 
may be a draw if played on a 5 x 5 x 5 x 5 hypercube. The 
number of possible rows on which one can win on a cube of 
72-dimensions is given by the following formula (n  is the 
number of dimensions, k the number of cells on a side) : 

For an explanation of how this formula is derived, see Leo 
Moser's comments in the A nzericnn Mathema tical Monthly ,  
February 1948, page 99. 

The ancient Japanese game of go-moku (five stones), still 
popular in the Orient, is played on the intersections of a go 
board (this is equivalent to playing on the cells of a 19 x 19 
square). Players take turns placing counters from an un- 
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F I G .  19 .  
Four-dimensional ticktacktoe. Dotted lines show some winning plays. 

limited supply until one player wins by getting five in a line, 
orthogonally or diagonally. No moves are allowed. Experts 
are of the opinion that  the first player can force a win, but 
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as f a r  as  I know, no proof of this has ever been published. 
The game became popular in England in the 1880s under the 
name of "go-bang." I t  was sometimes played on an ordinary 
checker board, each player using 12 or 15 checkers. Moves 
were permitted in any direction if no one had won by the 
time all the checkers were placed. 

During the past decade a number of electrical ticktacktoe 
playing machines have been constructed. It is  interesting to 
learn that the first ticktacktoe robot was invented (though 
never actually built) by Charles Babbage, the nineteenth- 
century English pioneer inventor of calculating devices. 
Babbage planned to exhibit his machine in London to raise 
funds for more ambitious work, but abandoned his plans 
after learning that  current London exhibits of curious ma- 
chines (including a "talking machine" and one that  made 
Latin verses) had been financial flops. 

A novel feature of Babbage's robot was its method of ran- 

FIG.  20.  
The 

assembled 
cube. 
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domizing choices when faced with alternate lines of equally 
good play. The machine kept a running total of the number 
of games won. If called upon to choose between moves A 
and B, the machine consulted this total, played A if the num- 
ber was even, B if odd. For three alternatives, the robot 
divided the total by 3 to obtain a remainder of 0, 1 or 2, each 
result gearing it to a different move. "It is obvious that any 
number of conditions might be thus provided for," Babbage 
writes in his Pctssnges from the Life of n Philosopher, 1864, 
pages 467-471. "An inquiring spectator . . . might watch a 
long time before he discovered the principle upon which it 
[the robot] acted." 

Unfortunately Babbage left no record of what he calls the 
"simple" mechanical details of his machine, so one can only 
guess a t  its design. He does record, however, that  he "imag- 
ined that  the machine might consist of the figures of two 
children playing against each other, accompanied by a lamb 
and a cock. That the child who won the game might clap his 
hands whilst the cock was crowing, after which, that  the 
child who was beaten might cry and wring his hands whilst 
the Iamb began bleating." A less imaginative ticktacktoe 
machine, displayed in 1958 a t  the Portuguese Industrial Fair  
in Lisbon, cackled when i t  won, snarled when (presumably 
set on a "poor play" circuit) i t  lost. 

I t  might be thought that  programing a digital computer 
to play ticktacktoe, or designing special circuits for a tick- 
tacktoe machine, would be simple. This is true unless your 
aim is to construct a master robot that  will win the maxi- 
mum number of games against inexperienced players. The 
difficulty lies in guessing how a novice is most likely to play. 
He certainly will not move entirely a t  random, but just how 
shrewd will he be? 

To give an idea of the sort of complications that  arise, 
assume that  the novice opens on cell 8. The machine might 
do well to make an irrational response by seizing cell 3 ! This 
would be fatal against an  expert, but if the player is only 
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moderately skillful, he is  not likely to  hit on his one winning 
reply, cell 9. (See comments on Alain White's article in the 
bibliography.) Of the six remaining replies, four a re  dis- 
astrous. There will be, in fact, a strong temptation for him 
to play on cell 4 because this leads to two promising traps 
against the robot. Unfortunately, the robot can spring its 
own t rap  by following with cell 9, then 5 on i ts  next move. 
It might turn out that  in actual play the machine would win 
more often by this reckless strategy than with a safe course 
that  would most likely end in a draw. 

A truly master player, robot or human, would not only 
know the most probable responses of novices, a s  determined 
by statistical studies of past games; he would also analyze 
each opponent's style of play to determine what sort of mis- 
takes the opponent would most likely make. If the novice 
improved as he played, this too would have to be considered. 
At this point the humble game of ticktacktoe plunges us into 
f a r  from trivial questions of probability and psychology. 

A D D E N D U M  

THE NAME "ticktacktoe" has many variations in spelling 
and pronunciation. According to the Oxford Dictionary of 
Mother Goose Rhymes, 1951, page 406, i t  derives from an 
old English nursery rhyme that  goes: 

Tit, tat,  toe, 
My first go, 

Three jolly butcher boys all in a row. 
Stick one up, stick one dozun, 
Stick one in the old man's crown. 

I have observed that  many ticktacktoe players are  under 
the mistaken impression that  because they can play an un- 
beatable strategy they have nothing more to learn about the 
game. A master player, however, must be quick to take the 
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best possible advantage of a bad play. The following three 
examples, all from the side opening, will make this clear. 

If you open with X8 and he follows with 02,  your best 
response against a novice is X4 because i t  wins in four out 
of six moves now open to 0. He can block your traps only by 
playing 0 7  or 09.  

If he opens with X8 and you respond with a lower corner, 
say 09 ,  you can spring winning traps if he plays X2, X4 or 
X7. 

If he opens with X8, a response of 0 5  may lead to an 
amusing development. Should he take X2, you can then per- 
mit him to designate your own next move for i t  is impossible 
for you to play without being able to set a winning trap! 

It was mentioned in the chapter that  the moving counter 
variation popular in ancient Rome is a win for the first play- 
er  if he takes the center square. For readers who are inter- 
ested, the two possible lines of forced play are as follows: 

5 3 
4 6 

(1) 9 1 
4 t o  7 Any  m o v e  
5 t o  8 

6 
9 
2 

Any m o v e  

These lines of play will win regardless of whether moves 
along the two main diagonals are or are not permitted, but 
the first one fails if moves along short diagonals are  legal. 



C H A P T E R  F I V E  

Probability Paradoxes 

P ROBABILITY theory is a field of mathematics unusual- 
ly rich in paradoxes- truths that cut so strongly against 

the grain of common sense that they are difficult to believe 
even after one is confronted with their proofs. The paradox 
of birth dates is a sterling example. If 24 people are selected 
a t  random, what would you estimate the probability to be 
that two or more of them will have the same birthday (that 
is, the same month and day of the year) ? Intuitively you 
feel it should be very low. In fact, it is 27/50 or slightly bet- 
ter than 50 per cent! 

George Gamow, in One Two Three- Infinity, gives the 
following simple method of arriving at  this unexpected re- 
sult. The probability that the birthdays of any two people 
are not alike is clearly 364/365 (since there is only one 
chance in 365 that one person's birthday will coincide with 
another's). The probability that a third person's birthday 
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will differ from the other two is 3631365; a fourth person's, 
3621365, and so on until we reach the 24th person (3421365). 
We thus obtain a series of 23 fractions which must be multi- 
plied together to reach the probability that all 24 birthdays 
are different. The product is a fraction that reduces to about 
23150. In other words, if you were to bet on at  least one co- 
incidence of birth dates among 24 people, you would in the 
long run lose 23 and win 27 out of every 50 such bets. (This 
computation ignores February 29 and also the fact that 
birth dates tend to be concentrated more in certain months 
than others. Actually, the probability is .507+, or slightly 
better than '/2, of a coincidence among 23 people. 

These odds are so surprising that an actual testing of 
them in a classroom or a t  a social gathering makes for an 
entertaining diversion. If 23 or more people are present, 
let each person write his birthday on a slip of paper. Collect 
and compare the slips. More likely than not, a t  least two 
dates will match, often much to the astonishment of the 
parties concerned who may have known each other for years. 
Fortunately, it does not matter in the least if anyone cheats 
by giving an incorrect date. The odds remain exactly the 
same. 

An even easier way to test the paradox is by checking 
birth dates on 23 names picked a t  random from a Who's 
Who or some other biographical dictionary. Of course the 
more names you check beyond 23, the greater the probabil- 
ity of a coincidence. Figure 21 (from William R. Ransom's 
One Hundred Mathematical Curiosities, 1955) shows in 
graph form how the probability curve rises with an increas- 
ing number of persons. The graph stops with 60 people be- 
cause beyond that number the probability is too close to 
certainty for the curve to be distinguished on the graph 
from a straight line. Note how the curve climbs steeply un- 
til it reaches about 40 persons, then levels off toward cer- 
tainty. For  100 people, the odds for a fair bet on a coinci- 
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dence are about 3,300,000 to 1. Absolute certainty is not 
reached, of course, until 366 people are  involved. 

A neat illustration of the paradox is provided by the birth 
and death dates of the presidents of the United States. The 
probability of a coincidence in each case (33 birth dates, 30 
death dates) is close to 75 per cent. Sure enough, Polk and 
Harding were born on November 2, and three presidents- 
Jefferson, Adams and Monroe- all died on July 4. 

Perhaps even more astounding is the paradox of the sec- 
ond ace. Assume that  you are playing bridge and just after 
the cards are dealt you look over your hand and announce, 
"I have an ace." The probability that you have a second ace 
can be calculated precisely. I t  proves to be 5359/14498 which 
is less than 1/2. Suppose, however, that  all of you agree 
upon a particular ace, say the Ace of Spades. The play con- 
tinues until you get a hand which enables you to  say, "I have 
the Ace of Spades," The probability that you have another 
ace is now 11686/20825 or slightly bet ter  than 1/2! Why 
should naming the ace affect the odds? 
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The actual computation of chances in these two cases is 
long and tedious, but the working of the paradox can be eas- 
ily understood by reducing the deck to only four cards- 
Ace of Spades, Ace of Hearts, Two of Clubs, and Jack of 
Diamonds. If these cards are shuffled and dealt to two play- 
ers, there are  only six possible combinations (shown in Fig. 
22) that  a player can hold. Five of these two-card hands 
permit the player to say, "I have an ace," but in only one 
instance does he have a second ace. Consequently the prob- 
ability of the second ace is 1/5. On the other hand, there are  
only three combinations that  permit the player to declare 
that  he holds the Ace of Spades. One of them includes an- 
other ace, making the probability of the second ace 1/3. 
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A similar paradox is that of the second child. Mr. Smith 
says, "I have two children and a t  least one of them is a boy." 
What is the probability that  the other child is a boy? One is 
tempted to say 1/2 until he lists the three possible combina- 
tions of equally probable possibilities- BB, BG, GB. Only 
one is BB, hence the probability is 1/3. Had Smith said that  
his oldest (or tallest, heaviest, etc.) child is a boy, then the 
situation is entirely different. Now the combinations are re- 
stricted to BB and BG, and the probability that  the other 
child is male jumps to 1/2. If this were not the case we 
would have a most ingenious way to guess the face of a con- 
cealed coin with better than even odds. We would simply 
flip our own coin. If it came heads we would reason: "There 
are two coins here and one of them (mine) is heads. The 
probability the other is heads is therefore 1/3, so I will bet 
that  i t  is tails." The fallacy of course is that we are specify- 
ing zohich coin is heads. This is the same as identifying the 
oldest child as the boy, and i t  changes the odds in a similar 
fashion. 

The most famous of all probability paradoxes is the St. 
Petersburg paradox, first set forth in a paper by the famous 
mathematician Daniel Bernoulli before the St. Petersburg 
Academy. Suppose I toss a penny and agree to pay you a 
dollar if i t  falls heads. If i t  comes tails, I toss again, this 
time paying you two dollars if the coin is heads. If i t  is tails 
again, I toss a third time and pay four dollars if i t  falls 
heads. In short, I offer to double the penalty with each toss 
and I continue until I am obliged to pay off. What should 
you pay for the privilege of playing this one-sided game 
with me? 

The unbelievable answer is that  you could pay me any 
amount, say a million dollars, for each game and still expect 
to come out ahead. In any single game there is a probability 
of 1/2 that you will win a dollar, 1/4 that you will win two 
dollars, 1/8 that you will win four dollars, and so on. There- 
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fore the total you may expect to win is (1 X 1/2) + (2  X 

1/4) + (4  X 1/53). . . . The sum of this endless series is in- 
finite. As a result, no matter what finite sum you paid me in 
advance per game, you would win in the end if we played 
enough games. This assumes that  I have unlimited capital 
and that  we can play an  unlimited number of games. If you 
paid, say, $1,000 for one game, the odds are high that  you 
would come out a loser. But this expectation is more than 
balanced by the fact that  you have a chance, albeit small, of 
winning an astronomical sum by a long, unbroken series of 
tails. If I have only a finite amount of capital, which would 
always be the case in actual practice, then the fair price for 
a game is also finite. The St. Petersburg paradox is involved 
in every "doubling" system of gambling, and its full analysis 
leads into all sorts of intricate byways. 

Carl G. Hempel, a leading figure in the "logical positivist" 
school and now a professor of philosophy a t  Princeton Uni- 
versity, discovered another astonishing probability paradox. 
Ever since he first explained i t  in 1937 in the Swedish peri- 
odical Theoria, "Hempel's paradox" has been a subject of 
much learned argument among philosophers of science, for 
i t  reaches to the very heart of scientific method. 

Let us assume, Hempel began, that  a scientist wishes to 
investigate the hypothesis "All crows are black." His re- 
search consists of examining as many crows as possible. 
The more black crows he finds, the more probable the hy- 
pothesis becomes. Each black crow can therefore be re- 
garded as a "confirming instance" of the hypothesis. Most 
scientists feel that  they have a perfectly clear notion of what 
a "confirming instance" is. Hempel's paradox quickly dispels 
this illusion, for we can easily prove, with ironclad logic, 
that  a purple cow also is a confirming instance of the hy- 
pothesis that  all crows are black! This is how i t  is done. 

The statement "All crows are black" can be transformed, 
by a process logicians call "immediate inference," to the 
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logically equivalent statement, "All not-black objects are  
not-crows." The second statement is identical in meaning 
with the original; i t  is simply a different verbal formula- 
tion. Obviously, the discovery of any object that  confirms 
the second statement must also confirm the first one. 

Suppose then that  the scientist searches about for not- 
black objects in order to confirm the hypothesis that  all such 
objects are not-crows. He comes upon a purple object. Closer 
inspection reveals that  i t  is not a crow but a cow. The purple 
cow is clearly a confirming instance of "All not-black ob- 
jects are not-crows." I t  therefore must add to the probable 
truth of the logically equivalent hypothesis, "All crows are 
black." Of course the same argument applies to a white ele- 
phant or a red herring or the scientist's green necktie. As 
one philosopher recently expressed it, on rainy days an orni- 
thologist investigating the color of crows could continue his 
research without getting his feet wet. He has only to glance 
around his room and note instances of not-black objects that  
are not-crows ! 

As in previous examples of paradoxes, the difficulty seems 
to lie not in faulty reasoning but in what Hempel calls a 
"misguided intuition." It all begins to make more sense when 
we consider a simpler example. A company employs a large 
number of typists, some of whom we know to have red hair. 
We wish to test the hypothesis that all these red-headed girls 
are married. An obvious way to  do this is to  go to each red- 
haired typist and ask her if she has a husband. But there is 
another way, and one that  might even be more efficient. We 
obtain from the personnel department a list of all unmarried 
typists. We then visit the girls on this list to check the color 
of their hair. If none have red hair then we have completely 
confirmed our hypothesis. No one would dispute the fact that  
each not-married typist who had not-red hair would be a 
confirming instance of the theory that  the firm's red-headed 
typists are all married. 
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There is little difficulty in accepting this investigative pro- 
cedure because the sets with which we are dealing have a 
small number of members. But if we are trying to determine 
whether all crows are black, we have an enormous dispro- 
portion between the number of crows on the earth and the 
number of not-black things. Everyone agrees that  checking 
on not-black things is a highly inefficient way to go about 
the research. The question a t  issue is a subtler one- wheth- 
er  i t  is meaningful to say that  a purple cow is in some sense 
a confirming instance. Does i t  add, a t  least in dealing with 
finite sets (infinite* sets lead us into murkier waters), an 
inconceivably small amount to the probability of our orig- 
inal hypothesis? Some logicians think so. Others are  not so 
sure. They point out, for example, that  a purple cow can 
also be shown, by exactly the same reasoning, to be a con- 
firming instance of "All crows are white." How can an ob- 
ject's discovery add to the probable truth of two contradic- 
tory hypotheses? 

One may be tempted to dismiss Hempel's paradox with a 
smile and shrug. I t  should be remembered, however, that  
many logical paradoxes which were long regarded as trivial 
curiosities proved to be enormously important in the de- 
velopment of modern logic. In  similar fashion, analyses of 
Hempel's paradox have already provided valuable insights 
into the obscure nature of inductive logic, the tool by which 
all scientific knowledge is obtained. 



C H A P T E R  S I X  

The Icosian Game and the 
Tower of Hanoi 

T 0 A MATHEMATICIAN few experiences are  more ex- 
citing than the discovery that  two seemingly unrelated 

mathematical structures are  really closely linked. Recently 
D. W. Crowe of the University of British Columbia made 
such a discovery concerning two popular 19th-century puz- 
zles: the "Icosian Game" and the "Tower of Hanoi." We 
shall first describe each puzzle and then show the startling 
manner in which they are  related. 

The Icosian Game was invented in the 1850s by the illus- 
trious Irish mathematician Sir William Rowan Hamilton. 
I t  was intended to illustrate a curious type of calculus that  
he had devised and which was similar in many ways to his 
famous theory of quaternions (the forerunner of modern 
vector analysis). The calculus could be applied to a number 
of unusual path-tracing problems on the surfaces of the five 
Platonic solids, particularly the icosahedron and dodecahed- 
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ron. Hamilton called i t  the Icosian calculus, though the game 
was actually played on the edges of a dodecahedron. In 1859 
Hamilton sold the game to  a dealer in London for  25 pounds; 
i t  was then marketed in several forms in England and on 
the Continent. This was the only money Hamilton ever re- 
ceived directly, his biographer tells us, for  a discovery or 
publication. 

Hamilton suggested a variety of puzzles and games that  
could be played on the dodecahedron, but the basic puzzle is  
as  follows. Star t  a t  any corner on the solid (Hamilton la- 
beled each corner with the name of a large city) ; then by 
traveling along the edges make a complete "trip around the 
world," visiting each vertex once and only once, and return 
to the starting corner. In other words, the path must form 
a closed circuit along the edges, passing once through each 
vertex. 

If we imagine that  the surface of a dodecahedron is made 
of rubber, we can puncture one of its faces and stretch i t  

F I G .  2 3 .  
Dodecahedron ( l e f t )  is punctured ( d o t )  and stretched flat ( r i g h t ) .  
The flat network, which is not in scale with the solid, is topologically 
identical with its edges. 
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open until i t  lies in a plane. The edges of the surface will 
now comprise the network shown in Figure 23. This net- 
work is topologically identical with the network formed by 
the edges of the solid dodecahedron, and of course i t  is much 
more convenient to handle than the actual solid. The reader 
may enjoy tackling the "round trip" problem on this net- 
work, using counters to mark each vertex as  i t  is visited. 

On a dodecahedron with unmarked vertices there a re  only 
two Hamiltonian circuits that  are  different in form, one a 
mirror image of the other. But if the corners are  labeled, 
and we consider each route "different" if i t  passes through 
the 20 vertices in a different order, there are  30 separate 
circuits, not counting reverse runs of these same sequences. 
Similar Hamiltonian paths can be found on the other four 
Platonic solids and on many, but not all, semiregular poly- 
hedrons. 

The familiar Tower of Hanoi was invented by the French 
mathematician Edouard Lucas and sold as  a toy in 1883. I t  
originally bore the name of "Prof. Claus" of the College of 
"Li-Sou-Stian," but these were soon discovered to be ana- 
grams for "Prof. Lucas" of the College of "Saint Louis." 
Figure 24 depicts the toy as  i t  is usually made. The problem 
is to transfer the tower of eight disks to either of the two 
vacant pegs in the fewest possible moves, moving one disk 
a t  a time and never placing a disk on top of a smaller one. 

I t  is not hard to prove that  there is a solution regardless 
of how many disks are  in the tower, and that  the minimum 
number of moves required is expressed by the formula 2" - 1 
(n being the number of disks). Thus three disks can be 
transferred in seven moves, four in 15, five in 31 and so on. 
For the eight disks shown in Figure 24, 255 moves are  re- 
quired. The original description of the toy called i t  a sim- 
plified version of a mythical "Tower of Brahma" in a temple 
in the Indian city of Benares. This tower, the description 
read, consists of 64 disks of gold, now in the process of be- 
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The Tower of Hanoi. 

ing transferred by the temple priests. Before they complete 
their task, i t  was said, the temple will crumble into dust and 
the world will vanish in a clap of thunder. The disappear- 
ance of the world may be questioned, but there is little doubt 
about the crumbling of the temple. The formula 264 - 1 yields 
the 20-digit number 18,446,744,073,709,551,615. Assuming 
that  the priests worked night and day, moving one disk 
every second, i t  would take them many thousands of millions 
of years to finish the job. 

(The forementioned number, by the way, is not a prime, 
but if we increase the number of disks to 89, 107 or 127, the 
number of moves required to transfer them in each case is 
a prime. They are examples of the so-called Mersenne num- 
bers : primes having the form of 2"- 1. Lucas himself was 
the first man to verify that  212' - 1 was a prime. This Gar- 
gantuan 39-digit number was the largest known prime un- 
til 1952, when a large electronic computer was used to find 
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five higher Mersenne primes. Thirty Mersenne primes are 
known. The thirtieth and largest, 221m91 - 1, was discovered 
in 1985. I t  has 65,050 digits. 

A Tower of Hanoi puzzle is easily made by cutting eight 
cardboard squares of graduated sizes (or using playing 
cards from the ace to the eight) and moving them among 
three spots on a piece of paper. If. the spots form a triangle, 
the following simple procedure will solve the puzzle for any 
number of "disks." Transfer the smallest disk on every other 
play, always moving i t  around the triangle in the same di- 
rection. On the remaining plays, make the only transfer 
possible that  does not involve the smallest disk. ( I t  is inter- 
esting to note that, if the disks are numbered serially, the 
even disks circle the triangle in one direction and the odd 
disks in the opposite direction.) 

How is this puzzle related to Hamilton's game? To explain 
the connection we must first consider a tower of three disks 
only, labeling the disks, from top to bottom, A, B and C. If 
we follow the procedure given above, we solve the puzzle by 
moving the disks in the following order: ABACABA. 

Let us now label with A, B and C the three coordinates of 
a regular hexahedron, commonly called a cube [see illustra- 
tion a t  left of Fig. 251. If we trace a path along the edges of 
the cube, choosing the coordinates in the order ABACABA, 
the path will form a Hamiltonian circuit! Crowe saw that 
this could be generalized as follows: the order of transfer- 
ring ?z disks in the Tower of Hanoi puzzle corresponds ex- 
actly to the order of coordinates in tracing a Hamiltonian 
path on a cube of n dimensions. 

An additional illustration will make this clear. Although 
we cannot make a model of a four-dimensional cube (called 
a hypercube or tesseract), we can project the network of its 
edges in the three-dimensional model depicted a t  right of 
Figure 25. This network is topologically identical to the net- 
work of edges on a hypercube. We label its coordinates A, B, 
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Hamiltonian path is traced along the edges of a cube a t  left. The cube 
has the coordinates A, B and C ;  the path follows them in the order 
ABACABA. At right a Hamiltonian path is traced along the edges of 
a four-dimensional cube projected in three dimensions. This cube has 
the coordinates A, B, C and I); the path follows them ABACABADA- 
BACABA. This corresponds to the order of t ransferr ing four disks 
in the Tower of Hanoi. 

C and D, the D coordinate being represented by the diagonal 
lines. 

The order for  t ransferr ing a tower of four disks is 
ABACABADABACABA. When we traverse the hypercube 
model, making our turns  correspond to this sequence, we 
find ourselves tracing a Hamiltonian path. By the same 
token five disks t ransfer  in an  order corresponding to a 
Hamiltonian circuit on a five-dimensional hypercube, six 
disks correspond to a six-dimensional hypercube, and so on. 

A D D E N D U M  

PROVING that  n disks in the Tower of Hanoi can be moved 
to another peg in 2j1 - 1 steps is not difficult, and is an  excel- 
lent classroom exercise in mathematical induction. (See 
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Mathematics Teacher, Vol. 44, page 505, 1951; and Vo1. .45, 
page 522, 1952.) The puzzle is easily generalized to any 
number of pegs. (See Ernest Dudeney's The Canterbury 
Puxxles, 1907, Problem No. 1 ;  and the American Mathe- 
matical Monthly, March 1941, Problem No. 3918.) 

The isomorphism of the Tower of Hanoi's solution and the 
Hamiltonian path on cubes and hypercubes is perhaps not 
so startling when we realize that  in both cases the sequence 
of moves is a pattern familiar to anyone working with 
binary computers. We first write the binary numbers from 
1 to 8 and label the columns A, B, C, D as  shown in Figure 
26. We then write opposite each row the letter that  identifies 
the "1" that  is farthest to the right on each row. The se- 
quence of these letters from top down will be the pattern in 
question. 

This pattern is encountered frequently in mathematical 
puzzles. Cards for guessing a thought-of number and a n  an- 

D C B A  

F I G .  2 6 .  

Table of b inary numbers. 
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cient mechanical puzzle called the Chinese rings are two 
additional examples. The most familiar instance of the pat- 
tern is the sequence in the sizes of marks on a one-inch seg- 
ment of an ordinary ruler [see Fig. 271. The pattern results, 
of course, from successive binary divisions of the inch into 
halves, quarters, eighths, and sixteenths. 

F I G .  2 7 .  
Binary divisions of a n  inch. 



C H A P T E R  S E V E N  

Curious 
Topological Models 

S MANY READERS of this book are  aware, a Moebius A band is a geometrical curiosity which has only one 
surface and one edge. Such figures are the concern of the 
branch of mathematics called topology. People who have a 
casual interest in mathematics may get the idea that  a top- 
ologist is a mathematical playboy who spends his time mak- 
ing Moebius bands and other diverting topological models. 
If they were to open any recent textbook of topology, they 
would be surprised. They would find page after  page of 
symbols, seldom relieved by a picture or diagram. I t  is t rue 
that  topology grew out of the consideration of geometrical 
puzzles, but today i t  is a jungle of abstract theory. Topolo- 
gists are  suspicious of theorems that  must be visualized in 
order to be understood. 

Serious topological studies nonetheless produce a constant 
flow of weird and amusing models. Consider, for  example, 
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FIG. 28.  
Double Moebius band is made by placing two strips of paper together 
( l e f t ) ,  giving both of them a half-twist and joining their ends a s  in- 
dicated a t  right. 

the double Moebius band. This is formed by placing two 
strips of paper together, giving them a single half-twist as 
if they were one strip, and joining their ends as shown in 
Figure 28. 

We now have what appears to be two nested Moebius bands. 
Indeed, you can "prove" that  there are two separate bands 
by putting your finger between the bands and running i t  all 
the way around them until you come back to the point a t  
which you started. A bug crawling between the bands could 
circle them indefinitely, always walking along one strip 
with the other strip sliding along its back. At no point would 
he find the "floor" meeting the "ceiling." An intelligent bug 
would conclude that  he was walking between the surfaces of 
two separate bands. 

Suppose, however, that  the bug made a mark on the floor, 
and circled the bands until he reached the mark again. I t  
would find the mark not on the floor but on the ceiling, and 
i t  would require a second tr ip around the bands to find i t  on 
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the floor again! The bug would need considerable imagina- 
tion to comprehend that  both floor and ceiling were one side 
of a single strip. What appears to be two nested bands is 
actually one large band! Once you have opened the model 
into the large band, you will find i t  a puzzling task to restore 
i t  to its original form. 

When the band is in its double form, two separate edges 
of i t  run parallel to each other; they circle the model twice. 
Imagine that  these edges are joined and that  the band is 
made of thin rubber. You would then have a tube which 
could be inflated to make a torus (the topologist's term for 
the surface of a doughnut). The joined edges would form a 
closed curve that  coiled twice around the torus. This means 
that  a torus can be cut along such a curved line to form the 
double Moebius band. 

The double band is identical, in fact, with a single band 
that is given four half-twists before its ends are joined. I t  is 
possible to cut a torus into a band with any desired even 
number of half-twists, but impossible to cut i t  so as to pro- 
duce bands with an odd number of such twists. This is be- 
cause the torus is a two-sided surface and only bands with 
an even number of half-twists are two-sided. Although two- 
sided surfaces can be made by cutting one-sided ones, the 
reverse is not possible. If we wish to obtain one-sided bands 
(bands with an odd number of half-twists) by cutting a 
surface without edges, we must resort to cutting a Klein 
bottle. The Klein bottle is a closed one-sided surface with no 
edges, and can be bisected into two Moebius strips that  are 
mirror images of each other. 

The simple Moebius band is made by giving a str ip one 
half-twist before joining the ends. Can the band somehow 
be stretched until this edge is a triangle? The answer is yes. 
The first man to devise such a model was Bryant Tucker- 
man, one of the four pioneers in the a r t  of folding flexagons 
[see Chapter I ] .  Figure 29 shows how a piece of paper can be 
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cut, folded and pasted to create Tuckerman's model. 
Surfaces may not only have one or two sides; they may 

also differ topologically in the number and structure of their 
edges. Such traits cannot be altered by distorting the sur- 
face ; hence they are called topological invariants. Let us con- 
sider surfaces with no more than two edges, and edges that  
are  either simple closed curves or in the form of an ordinary 
single knot. If the surface has two edges, they may be inde- 
pendent of each other or linked. Within these limits we can 
list the following 16 kinds of surfaces (excluding edgeless 
surfaces such as the sphere, the torus and the Klein bottle) : 

F I G .  29.  
Moebius band with t r iangular  edge was 
devised by Bryant  Tuckerman. If the 
figure a t  bottom is redrawn, preferably 
on a larger scale, the polyhedral model 
a t  upper right may be assembled as  fol- 
lows. Firs t ,  cut out the figure. Second, 
fold it  "down" along the solid lines. 
Third, fold i t  in the opposite direction 
along the broken lines. Fourth, by apply- 
ing paste to the four  tabs, join edges A 
and A, B and B, C and C, D and D. The 
heavy lines in the finished polyhedron 
t race the  t r iangular  boundary of the  
Moebius surf ace. 
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O N E - S I D E D ,  O N E - E D G E D  

1. Edge is a simple closed curve. 
2. Edge is knotted. 

T W O - S I D E D ,  O N E - E D G E D  

3. Edge is a simple closed curve. 
4. Edge is knotted. 

O N E - S I D E D ,  T W O - E D G E D  

5. Both edges are simple closed curves, unlinked. 
6. Both edges are simple closed curves, linked. 
7. Both edges are knotted, unlinked. 
8. Both edges are  knotted, linked. 
9. One edge is simple ; one knotted, unlinked. 

10. One edge is simple ; one knotted, linked. 

T W O - S I D E D ,  T W O - E D G E D  

11. Both edges are simple closed curves, unlinked. 
12. Both edges are simple closed curves, linked. 
13. Both edges are knotted, unlinked. 
14. Both edges are  knotted, linked. 
15. One edge is simple ; one knotted, unlinked. 
16. One edge is simple ; one knotted, linked. 

Paper models are easily constructed to illustrate examples 
of each of these sixteen surfaces. Models for surfaces 1 
through 12 are depicted in Figure 30. Models of the remain- 
ing four surfaces are shown in Figure 31. 

When some of these models are  cut with scissors in cer- 
tain ways, the results are startling. As almost everyone who 
has played with a Moebius band knows, cutting the band in 
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F I G .  30. 
Paper models of surfaces 1 to  12. 
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- 

Paper 
F I G .  3 1 .  

models of surfaces 13 to  16. 
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half lengthwise does not produce two separate bands, as one 
might expect, but one large band. (The large band has four 
half-twists; thus i t  can be made up into the double Moebius 
band described earlier.) Not so well known is the fact that  
if you start  the cut a third of the way between one edge and 
the other, and cut until you return to the starting point, the 
Moebius band opens into a large band linked with a smaller 
one. 

Cutting surface 12 in half yields two interlocked bands of 
the same size, each exactly like the original one. Cutting sur- 
face 2 in half results in a large band that  has a knot in it. 
This latter stunt was the subject of a booklet that  enjoyed a 
wide sale in Vienna in the 1880s. The booklet revealed the 
secret of forming a knot in a cloth band without resorting 
to magical trickery. 

In  saying that  two edges are "linked" we mean linked in 
the manner of two links in a chain. To separate the links i t  
is necessary to open one link and pass the other through the 
opening. It is possible, however, to interlock two closed 
curves in such a manner that in order to separate them i t  is 
not necessary to pass one through an opening in the other. 
The simplest way to do this is shown by the upper curves 
in Figure 32. These curves can be separated by passing one 
band through itself a t  point A. 

The three closed curves a t  the bottom of the illustration 
also are inseparable without being linked. If you remove any 
one curve, the other two are f ree;  if you link any pair of 
curves, i t  frees the third one. This structure, by the way, is 
topologically identical with the familiar three-ring trade- 
mark of a well-known brand of beer. These rings are some- 
times called Borromean rings because they formed the coat 
of arms for the Renaissance Italian family of Borromeo. I 
know of no paper model of a single surface, free from self- 
intersection, which has two or more edges locked without 
being linked, but perhaps a clever reader can succeed in 
constructing one. 
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FIG.  3 2 .  
Interlocked curves that can be separate(' without passing one through an 
opening in the other. The curves a t  the top may be separated by passing the 
twisted curve through a cut in itself at  A, then rejoining the ends. 

A D D E N D U M  

AN interesting model of the double Moebius band can be 
made of rigid plastic. This makes it easy for someone to  run 
his finger all the way around between the "two" bands. 

Me1 Stover of Winnipeg wrote that  he made a model in 
flexible white plastic, then inserted a strip of red plastic 
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between "them." Since the red str ip is clearly seen to be a t  
all points between what appear to be two separate bands, 
the surprise is heightened when the red band is slipped out 
and the white str ip shown to be a single band. The red str ip 
must have open ends which are  overlapped rather than 
joined, otherwise i t  will be linked to the white band and 
cannot be slipped out. 

The red str ip in Stover's model, when i t  is placed within 
the white strip, assumes the form of a Moebius band. Every 
non-orientable (one-sided) surface can be covered in a sim- 
ilar fashion by what has been called a "two-sheeted" bi- 
lateral surface. For  example, the Klein bottle can be covered 
completely by a torus, half of which must be turned inside 
out. Like the Moebius str ip covering, this surface appears 
to be two separate surfaces, one within the other. If you 
puncture i t  a t  any point, you find the inner surface sep- 
arated from the outer by the surface of the Klein bottle, yet 
the inner and outer surfaces are parts of the same torus. 
(See Geometry axd the Imagi?zation by David Hilbert and 
S. Cohn-Vossen, English translation, 1956, page 313.) 
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The Game of Hex 

I T IS  something of an occasion these days when someone 
invents a mathematical game that  is both new and inter- 

esting. Such a game is Hex, introduced 15 years ago a t  Niels 
Bohr's Institute for Theoretical Physics in Copenhagen. It 
may well become one of the most widely played and thought- 
fully analyzed new mathematical games of the century. 

Hex is played on a diamond-shaped board made up of hex- 
agons [see Fig. 331. The number of hexagons may vary, but 
the board usually has 11 on each edge. Two opposite sides 
of the diamond are labeled "black" ; the other two sides are 
"white." The hexagons a t  the corners of the diamond belong 
to either side. One player has a supply of black pieces; the 
other, a supply of white pieces. The players alternately place 
one of their pieces on any one of the hexagons, provided the 
cell is not already occupied by another piece. The objective 
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F I G .  3 3 .  
A wjnning chain fo r  "black" on a Hex board with 11 hexagons on 
each side. 

of "black" is to complete an  unbroken chain of black pieces 
between the two sides labeled "black." "White" tries to com- 
plete a similar chain of white pieces between the sides la- 
beled "white." 

The chain may freely twist and t u r n ;  an example of a 
winning chain is shown in Figure 33. The players continue 
placing their pieces until one of them has made a complete 
chain. The game cannot end in a draw, because one player 
can block the other only by completing his own chain. These 
rules are  simple, yet Hex is a game of surprising mathe- 
matical subtlety. 

Hex was invented by Piet Hein, who must surely be one 
of the most remarkable men in Denmark. Hein began his 
career as  a student a t  the Institute for Theoretical Physics; 
then his industrial inventions switched him to engineering, 
where he remained until the Germans invaded Denmark in 
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1940. Because Hein was the head of an anti-Nazi group, he 
was forced to go underground. After the war he became well 
known as a writer on scientific and other topics for Politi- 
ken, the leading Danish newspaper. He is also known, under 
the pseudonym of Kumbel, as the author of numerous vol- 
umes of epigrammatical poems. These books have sold in the 
millions. 

The game of Hex occurred to Hein while he was contem- 
plating the famous four-color theorem of topology. (The 
theorem, proved in 1976, is that four colors are sufficient 
to make any map so that no two countries of the same 
color have a common boundary.) Hein introduced the game 
in 1942 with a lecture to students at  the Institute. On De- 
cember 26 of that year Politiken published an account of 
the game; it soon became enormously popular in Denmark 
under the name of Polygon. Pads on which the game could 
be played with a pencil were sold, and for many months 
Politiken ran a series of Polygon problems, with prizes for 
the best solutions. 

In 1948, John F. Nash, then a graduate student in mathe- 
matics a t  Princeton University (later a professor at  Massa- 
chusetts Institute of Technology and one of the nation's 
outstanding authorities on game theory), independently re- 
invented the game. I t  quickly captivated students of mathe- 
matics both a t  the Institute for Advanced Study and Prince- 
ton. The game was commonly called either Nash or John, 
the latter name referring mainly to the fact that it was often 
played on the hexagonal tiles of bathroom floors. I t  did not 
acquire the name Hex until 1952 when a version of the game 
was issued under that title by the firm of Parker Brothers, 
Inc. 

Readers who would like to t ry  Hex are advised to make 
mimeographed copies of the board. The game can be played 
on these sheets by marking the hexagons with circles and 
crosses. If you should prefer to play with removable pieces 
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on a permanent board, a large one can easily be drawn on 
heavy cardboard or made by cementing together hexagonal 
tiles. If the tiles are  big enough, ordinary checkers make 
convenient pieces. 

One of the best ways to learn the subtleties of Hex is to 
play the game on a field with a small number of hexagons. 
When the game is played on a two-by-two board (four hexa- 
gons),  the player who makes the first move obviously wins. 
On a three-by-three board the first player wins easily by 
making his first move in the center of the board [see Fig. 3.41. 
Because "black" has a double play on both sides of his piece, 
there is no way in which his opponent can keep him from 
winning on his third move. 

FIG.  3 5 .  

On a four-by-four board things begin to get complicated. 
The first player is sure to win if he immediately occupies 
any one of the four cells numbered in Figure 35. If he makes 
his opening play elsewhere, he can always be defeated. An 
opening play in cell 2 or 3 insures a win on the fifth move ; 
a n  opening play in cell 1 or 4, a win on the sixth move. 

On a five-by-five board i t  can still be shown that  if the 
first player immediately occupies the hexagon in the center, 
he can win on his seventh move. On larger fields the analysis 
becomes enormously difficult. Of course the standard l l-by- 
11 board introduces such an astronomical number of com- 
plications that  a complete analysis seems beyond the range 
of human computation. 

Game theorists find Hex particularly interesting for  the 
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following reason. Although no "decision procedure" is known 
which will assure a win on a standard board, there is an  
elegant reduc t io  ad a b s u r d u m  "existence proof" that  there 
is a winning strategy for the first player on a field of any 
size! (An existence proof merely proves the existence of 
something without telling you how to go about finding it.) 
The following is a highly condensed version of the proof 
( i t  can be formulated with much greater rigor) as i t  was 
worked out in 1949 by John Nash: 

1. Either the first or second player must win, therefore 
there must be a winning strategy for either the first or sec- 
ond player. 

2. Let us assume that the second player has a winning 
strategy. 

3. The first player can now adopt the following defense. 
He first makes an  arbitrary move. Thereafter he plays the 
winning second-player strategy assumed above. I n  short, he 
becomes the second player, but with an extra piece placed 
somewhere on the board. If in playing the strategy he is re- 
quired to play on the cell where his first arbitrary move was 
made, he makes another arbitrary move. If later he is re- 
quired to play where the second arbitrary move was made, 
he makes a third arbitrary move, and so on. In this way, he 
plays the winning strategy with one extra piece always on 
the field. 

4. This extra piece cannot interfere with the first play- 
er's imitation of the winning strategy, for an extra piece is 
always an asset and never a handicap. Therefore the first 
player can win. 

5. Since we have now contradicted our assumption that  
there is a winning strategy for the second player, we are 
forced to drop this assumption. 

6. Consequently there must be a winning strategy for the 
first player. 
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There are a number of variations on the basic theme of 
Hex, including a vqsion in which each player tries to force 
his opponent to make a chain. According to a clever proof 
devised by Robert Winder, a graduate student of mathe- 
matics a t  Princeton, the first player can always win this 
game on a board which has an even number of cells on a 
side, and the second player can always win on a board with 
an odd number. 

After the reader has played Hex for a while, he may wish 
to tackle three problems devised by Hein. These are set forth 
in the three illustrations of Figure 36. The objective in all 
three problems is to find the first move that  will insure a win 
for "white." 

F I G .  3 6 .  
Three problems of Hex. 

A D D E N D U M  

HEX can be played on several different types of fields which 
are topologically equivalent to the field of hexagons. A field 
of equilateral triangles, for example, may be used, placing 
the counters on the intersections. An ordinary checkerboard 
is isomorphic with a Hex field if one assumes that  the 
squares connect diagonally in one direction only (say, NE 
and SW, but not NW and S E ) .  Both boards seem to me less 
satisfying for actual play than the mosaic of hexagons. 

Several shapes for a Hex field other than the diamond 
have been proposed. For example, Claude Shannon of the 
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Massachusetts Institute of Technology has suggested a field 
in the shape of an equilateral triangle. The winner is the 
first to complete a chain connecting all three sides of the 
triangle. Corner cells are regarded as belonging to both 
their adjacent sides. Nash's proof of first-player-win applies 
with equal force to this variant. 

To counter the strong advantage held by the first player 
in the standard game of Hex, several proposals have been 
made. The first player may be forbidden to open on the short 
diagonal. The winner may be credited with how few moves 
it took him to win. The first player opens with one move, 
but thereafter each player has two moves per turn. 

I t  is tempting to suppose that  on an n by n + 1 board 
(e.g., a 10-by-11), with the first player taking the sides that  
are farthest apart, the relative advantages of the two play- 
ers might be made more equal. Unfortunately, a simple 
strategy has been discovered which gives the second player 
a certain win. The strategy involves a reflection symmetry 
along a central axis. If you are the second player, you imag- 
ine the cells to be paired according to the scheme indicated 
by the letters in Figure 37. Whenever your opponent plays, 
you play on the other cell with the same letter. Owing to the 
shorter distance between your two sides of the board, it is 
impossible for you to lose ! 

SECOND PLAYER 

83AVld aN033S 

F I G .  3 7 .  
How second player pairs the cells to win on a "short" board. 
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A few words about general strategy in playing Hex. Quite 
a number of readers wrote that  they were disappointed to 
discover that  the first player has an easy win simply by 
taking the center cell, then extending a chain of adjacent 
cells toward his two sides of the board. They argued that  
since he always has a choice of two cells for the next link 
in the chain, i t  would be impossible to block him. Of course 
they failed to play long enough to discover that  chains can 
be blocked by taking cells that  are  not adjacent to the ends 
of the chain. The game is much subtler than i t  first appears. 
Effective blocking often involves plays that  seem to have no 
relationship to the chain that is being blocked. 

A more sophisticated strategy is based on the following 
procedure. Play first in the center, then seek to form on each 
of your sides a chain of separated links that  are  either diag- 
onal or vertical, like the two chains shown in Figure 38. If 
your opponent checks you vertically, you switch to a diag- 
onal play and if he checks you diagonally, you switch to 
vertical. Of course, once you succeed in joining your two 
sides with a disconnected chain on which each missing link 
is a double play, you cannot be blocked. This is a good strat- 

WHITE 
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egy to play on novices, but i t  can be countered by proper 
defensive moves. 

Still another strategy provided the basis of a Hex ma- 
chine constructed by Claude Shannon and E. F. Moore, both 
a t  that  time on the staff of Bell Telephone Laboratories. 
Here is Shannon's description of the device from his article 
on "Computers and Automata" in the Proceedings o f  t h e  
Ins t i tu t e  o f  Radio  Eng ineers ,  Vol. 41, October 1953 : 

A f t e r  a s t u d y  of th i s  game ,  i t  ~ c a s  conjectured t h a t  a rea- 
sonably good m o v e  could be m a d e  b y  t h e  fo l lowing process. 
A two-dimensional  potential field i s  se t  zcp corresponding t o  
t h e  playing board,  w i t h  w h i t e  pieces a s  positive charges and 
black pieces as  negat ive  charges.  T h e  t o p  and  b o t t o m  of t h e  
board are  negat ive  and t h e  tzoo sides positive. T h e  m o v e  t o  
be m a d e  corresponds t o  a cer ta in  specified saddle point in 
t h i s  field. 

T o  t e s t  t h i s  s t ra tegy ,  a n  a?zalog device toas constructed ,  
consist ing of a resistance n e t w o r k  and gadge t ry  t o  locate t h e  
saddle points.  T h e  general p ~ i n c i p l e ,  w i t h  some  improve -  
m e n t s  suggested b y  exper ience ,  proved t o  be reasonably 
sound.  W i t h  first m o v e ,  t h e  mach ine  loon about  seven ty  per 
cent o f  i t s  games  agains t  h u m a n  opponents .  I t  f r equen t l y  
surpr ised i t s  des igners  b y  choosing odd-looking m o v e s  zuhich, 
on  analys is ,  proved sound. W e  normal l y  t h i n k  o f  computers  
a s  exper t  a t  long,  involved calculations and poor in general- 
i zed  value  judgments .  Paradoxically,  t h e  positional judg- 
m e n t  of t h i s  mach ine  zcas good; i t s  chie f  zueakness zoas in 
end-game combinntorial  play. I t  i s  also curious t h a t  t h e  Hex-  
player reversed t h e  usual  comput ing  procedure in t h a t  it 
solved a basically digital  problem b y  a n  analog machine .  

As a joke, Shannon also built a Hex machine which took 
the second move and always won, much to the puzzlement of 
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Hexperts who knew of the first player's strong advantage. 
The board was short in one direction (7 by 8), but mounted 
on a rectangular box in such a way that  the inequality of 
sides was disguised. Few players were suspicious enough to 
count the cells along two edges. The machine, of course, 
played the winning reflection strategy previously described. 
I t  could have been constructed to respond instantly to moves, 
but thermistors were used to slow down i ts  operation. It 
took one to eight seconds to reach a decision, thus convey- 
ing the impression that  i t  was making a complicated analysis 
of the configuration on the field! 

A N S W E R S  

SOLUTIONS to the three Hex problems given in Figure 36 are  
shown in Figure 39. A complete analysis of alternate lines 
of play is too lengthy to give ; only the one correct first move 
for "white" is indicated by the crosses. 

F I G .  3 9 .  

Several readers expressed a belief that  in the third prob- 
lem "white" could also win by playing on cell 22 (begin a t  
the extreme left and number the rows up and to the right 
from 1 to 2 5 ) .  "Black," however, can defeat this by the fol- 
lowing ingenious line of play : 
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White Black 

22 19 
18 10 

5 9 
4 8 
3 7 

"White's" moves are forced in the sense that  "black" has 
a quicker win unless "white" makes the indicated move. At 
the close of the above moves, "black" will have a chain with 
a double play a t  both ends and a double play to close one 
break within the chain, so there is no way "white" can pre- 
vent the win. 
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Sam Loyd: America's 
Greatest Puxxlist 

T HE NAME Sam Loyd will not be familiar to many read- 
ers of this book, yet Loyd was an authentic American 

genius, and in his time something of a celebrity. For almost 
half a century, until his death in 1911, he was the nation's 
undisputed puzzle king. Thousands of superb puzzles, most 
of them mathematical, appeared under his name ; many are 
still popular today. 

Actually there were two Sam Loyds-father and son. 
When the elder Loyd died, the younger dropped the "Jr." 
from his name and continued his father's work, writing 
puzzle columns for magazines and newspapers, and issuing 
books and novelties from a dingy little office in Brooklyn. 
But the son, who died in 1934, did not possess the father's 
inventiveness ; his books are little more than hastily assem- 
bled compilations of his father's work. 
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Loyd senior was born in Philadelphia in 1841 of (as he 
once put it) "wealthy but honest parents." In  1844 his 
father, a real estate operator, moved his family to New 
York, where Sam attended public school until he was 17. If 
he had gone to college he might well have become an out- 
standing mathematician or engineer. But Sam did not go to 
college. One reason was that  he had learned to play chess. 

For ten years Loyd apparently did little except push chess 
pieces about on a chessboard. At that  time chess was enor- 
mously popular; many newspapers carried chess columns 
featuring problems devised by readers. Loyd's first problem 
was published by a New York paper when he was 14. Dur- 
ing the next five years his output of chess puzzles was so 
prodigious that  he became known throughout the chess 
world. When he was 1 6  he was made problem editor of Chess 
Monthly, a t  that  time edited by D. W. Fiske and the young 
chess master, Paul Morphy. Later he edited several news- 
paper chess columns and contributed regularly, under vari- 
ous pseudonyms, to a score of others. 

In 1877 and 1878 Loyd wrote a weekly chess page for 
Scientific American Supplement, beginning each article with 
an initial letter formed by the pieces of a chess problem. 
These columns comprised most of his book Chess Strategy, 
which he printed in 1878 on his own press in Elizabeth, New 
Jersey. Containing 500 of his choicest problems, this book is 
now much sought by collectors. 

Loyd's most widely reprinted chess problem, composed 
when he was 18, illustrates the delightful way in which his 
posers were often dressed up with anecdotes. It seems that  
in 1713, when Charles XI1 of Sweden was besieged by the 
Turks a t  his camp in Bender, the king often passed the time 
by playing chess with one of his ministers. On one occasion, 
when the game reached the situation depicted in Figure 40, 
Charles (playing white) announced a checkmate in three 
moves. At that  instant a bullet shattered the white knight. 



Charles studied the board again, smiled, and said he did not
need the knight because he still had a mate in four moves No
sooner had he said this than a second bullet removed his pawn
at king’s rook 2. Unperturbed, Charles considered his position
carefully and announced mate in five.

The story has a topper. Years later a German chess expert
pointed out that if the first bullet had destroyed the white rook
instead of the knight, Charles still would have had a mate in
six. Chess-playing readers may enjoy tackling this remarkable
four-part problem.

The original version of Loyd’s first commercially success-
ful puzzle, drawn by himself in his late teens, is depicted in
Figure 41. When the puzzle was cut along the dotted lines,
its three rectangles could be arranged (without folding) so
that the two jockeys rode the two donkeys. P. T. Barnum
bought millions of these puzzles from Loyd and distributed
them as “P. T. Barnum’s Trick Donkeys.” It is said that the
puzzle earned young Loyd $10,000 in a few weeks; it is
popular to this day.

From the mathematical standpoint Loyd’s most interest-
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ing creation is the famous "14-15" or "Boss" puzzle. This 
had a surprising revival in the late forties and can still be 
bought a t  the toy counters of most five-and-ten-cent stores. 
As shown in Figure 42, 15 numbered squares are free to 
slide about within a box. At the beginning of the puzzle the 
last two numbers are not in serial order. The problem is to 
slide the squares, without lifting them from the box, until 
all of them are in serial order, with the vacant space in the 
lower right-hand corner as  before. In the 1870s the 14-15 
puzzle had a tremendous vogue both here and abroad and nu- 
merous learned articles about it appeared in mathematical 
journals. 

Loyd offered a prize of $1,000 for a correct solution to the 
puzzle. Thousands of people swore they had solved it, but no 

I I 
I I 
L--,------,,--,,,,,------------J 

F I G .  4 1 .  
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one could recall his moves well enough to record them and 
collect the prize. Loyd's offer was safe because the problem 
is not solvable. Of the more than 20 trillion possible arrange- 
ments of the squares, exactly half can be made by sliding 
the squares from the arrangement depicted here. The remain- 
ing positions, including the one sought, have a different 
"parity" (to use the language of permutation mathematics) 
and cannot be reached from any position possessing the 
opposite parity. 

The game was sometimes played by placing the squares in 

FIG. 4 2 .  

F IG.  43.  

the box a t  random, and then trying to slide them into serial 
order. The probability of succeeding is of course 1/2. A 
simple way to determine whether any arrangement B can 
be obtained from any arrangement A is to see how many 
"interchanges" (exchanging the positions of any two squares 
by removing them from the box and replacing them) are 
required to convert A to B. If this number is even, A and B 
have the same parity and either can be obtained from the 
other by sliding. 

The fact that a single interchange of any two blocks auto- 
matically reverses the parity underlies a particularly fiend- 
ish version of the puzzle marketed a few years ago. Here 
the squares are not numbered but lettered as shown in Fig- 
ure 43. RATE and YOUR are on squares of one color, MIND 
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and PAL are  on squares of another color. You show this ar -  
rangement to your victim, then destroy i t  by sliding the 
blocks here and there a t  random. As you do so you slyly 
maneuver the second R into the upper left-hand corner be- 
fore you hand over the puzzle. The victim naturally permits 
this R to stay in the corner while he tries to put the rest of 
the blocks in order- an  impossible feat because the switch 
of R's has switched the parity. The best the poor fellow can 
achieve is RATE YOUR MIND PLA. 

Loyd's greatest puzzle is unquestionably the famous "Get 
off the Earth" paradox which he patented in 1896. A card- 
board circle, riveted a t  the center to a square piece of card- 
board, bears around its rim the pictures of 13  Chinese 
warriors. Pa r t  of each warrior is on the circle, and part  on 
the square. When the wheel is turned slightly, the parts  fit 
differently, and one warrior completely disappears! This 
puzzle has been reproduced so often that  we show in Figure 
44 the less familiar, but in some ways more puzzling, ver- 
sion called "Teddy and the Lions." I n  one position of the 
wheel you see seven lions and seven hunters; in another, 
eight lions and six hunters. Where does the eighth lion come 
f rom? Which hunter vanishes and where does he go? 

In 1914, three years after his father's death, Loyd junior 
issued a mammoth Cyclopecliu of Puzzles, surely the greatest 
collection of problems ever assembled in one volume. The 
following brain teaser is taken from this fabulous, long-out- 
of-print work. I t  illustrates how cleverly the old master was 
able to take a simple problem, calling for nothing more than 
the ability to think clearly and to handle fractions, and 
dramatize i t  in such a way that  i t  becomes an exciting 
challenge. 

In Siam, Loyd explains, two kinds of fish are  raised for 
their fighting qualities- a large white perch known as  the 
kingfish and a small black carp called the devilfish. "Such 
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F I G .  4 4 .  

Loyd's "Teddy and the lions" paradox. At  left there a re  seven lions 

antipathy exists between these two species that  they attack 
each other on sight and battle to the death." 

A kingfish can easily dispose of one or two of the little fish 
in just a few seconds. But the devilfish "are so agile and 
work together so harmoniously that  three of the little fel- 
lows would just equal a big one, and they would battle for 
hours without results. So cleverly and scientifically do they 
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and seven hunters; at right, eight lions and six hunters. 

carry on their line of attack that  four of the little fellows 
would kill a large one in just three minutes and larger num- 
bers would administer the coup de gr6ce proportionately 
quicker." 

(That is, five devilfish would kill one kingfish in two min- 
utes and 24 seconds, six in two minutes, and so on.) 

If four kingfish are opposed to 13 devilfish, which side 



92 Sam Loyd:  America's Greatest Puzzlist  

will win the fight and exactly how long will i t  take, assuming 
of course that  the little fish co-operate in the most efficient 
manner ? 

To avoid an  ambiguity in Loyd's statement of the prob- 
lem, i t  should be made clear that  the devilfish always attack 
single kingfish in groups of three or more, and stay with the 
large fish until he is disposed of. We cannot, for  example, 
assume that  while the twelve little fish hold the four large 
fish a t  bay, the thirteenth devil darts  back and forth to 
finish off the large fish by attacking all of them simulta- 
neously. If we permit fractions, so to speak, of devilfish to 
be effective, then we can reason that  if four devils kill a 
king in ' three minutes, thirteen devils will finish a king in 
12/13 minutes, or four kings in 48/13 minutes ( 3  minutes, 
41 and 7/13 seconds). But this same line of reasoning would 
lead to the conclusion that  twelve devils would kill one king 
in one minute, or four kings in four minutes, even without 
the aid of the thirteenth little fish- a conclusion that  clear- 
ly violates Loyd's assumption that  three little fish are unable 
to kill one devil. 

A D D E N D U M  

ARTHUR W. BURKS, professor of philosophy a t  the Univer- 
sity of Michigan, wrote to tell me of the interesting way in 
which Loyd's 14-15 puzzle resembles a modern digital com- 
puter. Each has a finite number of states, each state fol- 
lowed by another state. On every "run" of the computer or 
14-15 puzzle, i t  begins in a certain state. All other states can 
then be divided into two groups: the "admissible" states 
which can be realized by "inputs," and the "inadmissible" 
states which cannot. The matter is discussed on page 63 of 
"The Logic of Fixed and Growing Automata" by Professor 
Burks;  a 1957 memo issued by the Engineering Research 
Institute of the University of Michigan. 
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A N S W E R S  

I N  THE chess problem, White mates in three by taking the 
pawn with his rook. If black bishop takes rook, White jumps 
his knight to B3, Black is forced to move his bishop and 
White mates with pawn to Kt4. If Black had taken the 
knight instead of the rook, white rook checks on R3, Black 
interposes bishop, White mates with pawn to Kt4 as before. 

After the bullet shatters the white knight, White mates in 
four by taking the pawn with his pawn. If Black moves 
bishop to K6, White moves rook to Kt4. Black bishop to Kt4 
is followed by white rook to R4 (check). Bishop takes rook 
and White mates with pawn to Kt4. 

After the bullet removes the white pawn a t  R2, White 
mates in five with rook to QKt7. Should Black move his 
bishop to K6, then : (2) R-Ktl, B-Kt4 ; (3) R-KR1 (check), 
B-R5; (4) R-R2, PxR;  (5) P-Kt4 (mate). Should Black on 
his first move play B-Kt8, then : (2) R-Ktl, B-R7 ; (3) R-K1, 
K-R5 ; (4) K-Kt6, any move ; (5) R-K4 (mate). 

If the first bullet had removed White's rook instead of his 
knight, White mates in six by moving knight to B3. Black's 
best response is B-K8, which leads to (2) KtxB, K-R5 ; (3) 
P-R3, K-R4; (4) Kt-Q3, K-R5; (5) Kt-B4, P-R4; (6) Kt- 
Kt6 (mate). 

The jockeys can be placed on the two donkeys (which 
miraculously break into a gallop) as shown in Figure 45. 
Figure 46 reproduces a possible source of Loyd's famous 
puzzle: a Persian design of the early 17th century. 

Concerning the "Teddy and the Lions" paradox, i t  is 
meaningless to ask which lion has vanished or which hunter 
has newly appeared. A11 the lions and hunters vanish when 
the parts are  rearranged- to form a new set of eight lions, 
each 1/8 smaller than before, and six hunters, each 1/6 
larger than before. 
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There are many ways to tackle the fighting-fish problem. 
Here is Loyd's own characteristic account of the solution: 

"Three of the little fish paired off with each of three big 
fish, engaging their attention while the other four little fight- 
ers polished off the fourth big one in just three minutes. 

F I G .  4 5 .  
The puzzle of the donkeys solved. 

Then five little fellows tackled one big fish and killed him in 
2 minutes 24 seconds; while the other little ones were bat- 
tling with the other big ones. 

"It is evident that  if the remaining two groups had been 
assisted by one more fighter they would all have finished in 
the same time, so there is only sufficient resistance left in 
each of the big ones to call for the attention of a little fish 
for 2 minutes 24 seconds. Therefore if seven now attack in- 
stead of one, they would do i t  in one seventh of that  time, 
or 20 and 4/7 seconds. 

"In dividing the little-fish forces against the remaining 
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two big ones- one would be attacked by seven and the other 
by six- the last fish a t  the end of the 20 and 4/7 seconds 
would still require the punishment which one little one could 
administer in that time. The whole 13 little fellows, concen- 
trating their attack, would give the fish his quietus in one 
thirteenth of that time, or 1 and 53/91 seconds. 

"Adding up the totals of the time given in the several 
rounds- 3 minutes, 2 minutes 24 seconds, 20 and 4/7 sec- 
onds, and 1 and 53/91 seconds, we have 5 minutes 46 and 
2/13 seconds as the entire time consumed in the battle." 

FIG.  46. 
Seventeenth-century Persian design (Courtesy, Museum of Fine Arts, 
Boston). 
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Mathematical Card Tricks 

S OMERSET MAUGHAM'S short story "Mr. Know-All" 
contains the following dialogue : 

"Do you like card tricks?" 
"No, I hate card tricks." 
"Well, I'll just show you this one." 
After the third trick, the victim finds an  excuse to leave 

the room. His reaction is understandable. Most card magic 
is a crashing bore unless i t  is performed by skillful profes- 
sionals. There are, however, some "self-working" card tricks 
that  are interesting from a mathematical standpoint. 

Consider the following trick. The magician, who is seated 
a t  a table directly opposite a spectator, first reverses 20 
cards anywhere in the deck. That is, he turns them face up 
in the pack. The spectator thoroughly shuffles the deck so 
that  these reversed cards are randomly distributed. He then 
holds the deck underneath the table, where i t  is out of sight 
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of everyone, and counts off 20 cards from the top. This 
packet of 20 cards is handed under the table to the magician. 

The magician takes the packet but continues to hold i t  be- 
neath the table so that  he cannot see the cards. "Neither you 
nor I," he says, "knows how many cards are  reversed in this 
group of 20 which you handed me. However, i t  is likely that  
the number of such cards is less than the number of reversed 
cards among the 32 which you are holding. Without looking 
a t  my cards I am going to turn  a few more face-down cards 
face up and attempt to bring the number of reversed cards 
in my packet to exactly the same number as the number of 
reversed cards in yours." 

The magician fumbles with his cards for a moment, pre- 
tending that  he can distinguish the fronts and backs of the 
cards by feeling them. Then he brings the packet into view 
and spreads i t  on the table. The face-up cards are counted. 
Their number proves to be identical with the number of 
face-up cards among the 32 held by the spectator! 

This remarkable trick can best be explained by reference 
to one of the oldest mathematical brain-teasers. Imagine 
that  you have before you two beakers, one containing a liter 
of water;  the other a liter of wine. One cubic centimeter of 
water is transferred to the beaker of wine and the wine and 
water mixed thoroughly. Then a cubic centimeter of the 
mixture is transferred back to the water. Is  there now more 
water in the wine than wine in the water? Or vice versa? 
(We ignore the fact that in practice, a mixture of water and 
alcohol is a trifle less than the sum of the volumes of the two 
liquids before they are mixed.) 

The answer is that there is just as much wine in the water 
as water in the wine. The amusing thing about this problem 
is the extraordinary amount of irrelevant information in- 
volved. I t  is not necessary to know how much liquid there is 
in each beaker, how much is transferred, or how many 
transfers are made. It does not matter whether the mixtures 
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are  thoroughly stirred or not. It is not even essential that  
the two vessels hold equal amounts of liquid a t  the start!  
The only significant condition is that  a t  the end each beaker 
must hold exactly as much liquid as i t  did a t  the beginning. 
When this obtains, then obviously if x amount of wine is 
missing from the wine beaker, the space previously occu- 
pied by the wine must now be filled with x amount of water. 

If the reader is troubled by this reasoning, he can quickly 
clarify i t  with a deck of cards. Place 26 cards face down on 
the table to represent wine. Beside them put 26 cards face 
up to represent water. Now you may transfer cards back 
and forth in any manner you please from any part  of one 
pile to any part  of the other, provided you finish with exact- 
ly 26 in each pile. You will then find that  the number of 
face-down cards in either pile will match the number of 
face-up cards in the other pile. 

Now t ry  a similar test beginning with 32 face-down cards 
and 20 face up. Make as many transfers as you wish, end- 
ing with 20 cards in the smaller pile. The number of face-up 
cards in the large pile will of necessity exactly equal the 
number of face-down cards among the 20. Now turn over 
the small pile. This automatically turns its face-down cards 
face up and its face-up cards face down. The number of 
face-up cards in both groups will therefore be the same. 

The operation of the trick should now be clear. At the 
beginning the magician reverses exactly 20 cards. Later, 
when he takes the packet of 20 cards from the spectator, i t  
will contain a number of face-down cards equal to the num- 
ber of face-up cards remaining in the deck. He then pre- 
tends to reverse some additional cards, but actually all he 
does is turn the packet over. I t  will then contain the same 
number of reversed cards as there are reversed cards in the 
group of 32 held by the spectator. The trick is particularly 
puzzling to mathematicians, who are apt  to think of all sorts 
of complicated explanations. 
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Many card effects known in the conjuring trade as "spell- 
ers" are based on elementary mathematical principles. Here 
is one of the best. With your back to the audience, ask some- 
one to take from one to 12 cards from the deck and hide 
them in his pocket without telling you the number. You then 
tell him to look a t  the card a t  that  number from the top of 
the remainder of the deck and remember it. 

Turn around and ask for the name of any individual, liv- 
ing or  dead. For example, someone suggests Marilyn Mon- 
roe (the name, by the way, must have more than 12 letters). 
Taking the deck in your hand, you say to the person who 
pocketed the cards: "I want you to deal the cards one a t  a 
time on the table, spelling the name Marilyn Monroe like 
this." To demonstrate, deal the cards from the top of the 
deck to form a face-down pile on the table, taking one card 
for each letter until you have spelled the name aloud. Pick 
up the small pile and replace i t  on the deck. 

"Before you do this, however," you continue, "I want you 
to add to the top of the deck the cards you have in your 
pocket." Emphasize the fact, which is true, that  you have no 
way of knowing how many cards this will be. Yet in spite 
of this addition of an unknown number of cards, after the 
spectator has completed spelling Marilyn Monroe, the next 
card (that  is, the card on top of the deck) will invariably 
turn  out to  be his chosen card! 

The operation of the trick yields easily to analysis. Let x 
be the number of cards in the spectator's pocket and also the 
position of the chosen card from the top of the deck. Let y 
be the number of letters in the selected name. Your demon- 
stration of how to spell the name automatically reverses the 
order of y cards, bringing the chosen card to a position from 
the top that  is y minus x. Adding x cards to the deck there- 
fore puts ?J minus x plus x cards above the selected one. The 
x's cancel out, leaving exactly y cards to be spelled before 
the desired card is reached. 
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A more subtle compensatory principle is involved in the 
following effect. A spectator is asked to select any three 
cards and place them face down on the table without letting 
the magician see them. The remaining cards are shuffled and 
handed to the magician. 

"I will not alter the position of a single card," the magi- 
cian explains. "All I shall do is remove one card which will 
match in value and color the card you will select in a mo- 
ment." He then takes a single card from the pack and places 
i t  face down a t  one side of the table. 

The spectator is now asked to take the remaining cards 
in hand and to turn face up the three cards he previously 
placed on the table. Let us assume that  they are a nine, a 
queen and an ace. The magician requests that  he s tar t  deal- 
ing cards face down on top of the nine, counting aloud as he 
does so, beginning the count with 10 and continuing until he 
reaches 15. In other words, the spectator deals six cards 
face down on the nine. The same procedure is followed with 
the other two cards. The queen, which has a value of 12 
(jacks are  11, kings 13) ,  will require three cards to bring 
the count from 12 to 15. The ace (1) will require 14 cards. 

The magician now has the spectator total the values of 
the three original face-up cards, and note the card a t  that 
position from the top of the remainder of the deck. In  this 
case the total is 22 (9 plus 12 plus 1), so he looks a t  the 22nd 
card. The magician turns over his "prediction card." The 
two cards match in value and color! 

How is i t  done? When the magician glances through the 
deck to find a "prediction card," he notes the fourth card 
from the bottom and then removes another card which 
matches i t  in value and color. The rest of the trick works 
automatically. (On rare occasions you may find the predic- 
tion card among the bottom three cards of the pack. When 
this happens you must remember to tell the spectator later, 
when he makes his final count to a selected card, to finish 
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the count, then look a t  the n e x t  card.) I leave to the reader 
the easy task of working out an  algebraic proof of why the 
trick cannot fail. 

The ease with which cards can be shuffled makes them 
peculiarly appropriate for demonstrating a variety of prob- 
ability theorems, many of which are startling enough to be 
called tricks. For example, let us imagine that  two people 
each hold a shuffled deck of 52 cards. One person counts 
aloud from 1 to 52 ; on each count both deal a card face up 
on the table. What is the probability that a t  some point dur- 
ing the deal two identical cards will be dealt simultaneously? 

Most people would suppose the probability to be low, but 
actually i t  is better than 1/2!  The probability there will be 
n o  coincidence is 1 over the transcendental number e. (This 
is not precisely true, but the error is less than 1 over 10 to 
the 69th power. The reader may consult page 47 in the cur- 
rent edition of W. Rouse Ball's Mathemat ical  Recreations 
and Essays  for a method of arriving a t  this figure.) Since e 
is 2.718 . . ., the probability of a coincidence is roughly 17/27 
or almost 2/3. If you can find someone willing to bet you 
even odds that  no coincidence will occur, you stand a rather 
good chance to pick up some extra change. It is interesting 
to note that we have here an empirical procedure, based on 
probability, for making a decimal expansion of e (campar- 
able to the "Buffon's Needle'' procedure for doing the same 
thing with pi ) .  The more cards used, the closer the prob- 
ability of no coincidence approaches l/e. 
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Memorizing Numbers 

E VERYONE uses mnemonic devices- ways of memo- 
rizing bits of information by associating them with 

things that  are  easier to remember. In the United States the 
most familiar of these devices is surely the rhyme begin- 
ning: "Thirty days hath September. . . ." Another well- 
known mnemonic device is : "Every good boy does fine" (for 
EGBDF, the lines of the musical staff). 

The same principle can also be applied, with ingenious 
variations, to the memorizing of numbers. Such tricks come 
easily to mathematicians. When Bertrand Russell visited 
New York in 1951 he told a newspaper columnist that  he 
had no difficulty in recalling the number of his room a t  the 
Waldorf-Astoria- 1414- because 1.414 is the square root 
of 2. The British mathematician G. H. Hardy wrote of call- 
ing on his friend Srinivasa Ramanujan, the Indian mathe- 
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matical genius, in a taxicab numbered 1729. Hardy re- 
marked that  this was a dull number. "No," Ramanujan 
promptly replied. "It is a very interesting number. It is the 
smallest number expressible as a sum of two cubes in two 
different ways" (12 cubed plus 1 cubed, or 10 cubed plus 9 
cubed). I t  must be admitted that  even among mathemati- 
cians such an intimate acquaintance with numbers is rare. 

The most common mnemonic device for remembering a 
series of digits is a sentence or rhyme in which the number 
of letters in each word corresponds to the digits in the de- 
sired order. Many such memory props have been worked out 
in various languages to recall pi  beyond the usual four deci- 
mals. In  English they range in length from the anonymous 
"May I have a large container of coffee?" through Sir James 
Jeans's "How I want a drink, alcoholic of course, after the 
heavy chapters involving quantum mechanics" to this dog- 
gerel contributed by Adam C. Orr of Chicago to T h e  Literary 
Digest, January 20,1906, page 83 : 

N o w  I - even I - would celebrate 
I n  rhymes  unapt the  great 
Immortal Syracusan rivaled nevermore, 
W h o  in his wondrous lore, 
Passed on  before, 
L e f t  m e n  his guidance 
Hozu to  circles mensurate. 

I know of no similar aids in English to recall e, the other 
common transcendental number. However, if you memorize 
e to  five decimal places (2.71828), you automatically know 
i t  to nine, because the last four digits obligingly repeat 
themselves (2.718281828). In France e is memorized to 10 
places by the traditional memory aid: T u  aideras cl rappeler 
ta  quantit6 b beaucoup de docteurs amis. Perhaps some read- 
er can construct an  amusing English sentence that  will carry 
e to a t  least five decimals. 
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Is  there a mnemonic system which, once i t  has been mas- 
tered, will enable one to memorize quickly any series of 
digits? There is such a system, and i t  has been developed to 
a high degree by modern memory experts. Not only can the 
system be used to give an impressive dinner-table demon- 
stration of memory; i t  also can be highly useful in memo- 
rizing important mathematical and physical constants, his- 
torical dates, house and telephone numbers, license plates, 
social security numbers and so on. 

Although the a r t  of mnemonics goes back to ancient 
Greece (the term comes from Mnemosyne, the Greek god- 
dess of memory), i t  was not until 1634 that a Frenchman 
named Pierre Hkrigone published in Paris his Cursus Math-  
ematici  which contained an ingenious system for memoriz- 
ing numbers. The system consisted in substituting conso- 
nants for digits, then adding vowels wherever required so 
that  words could be formed. The words were then easily 
memorized by other mnemonic methods. 

Hkrigone's original number alphabet was soon adopted 
by memory experts in many countries. In  Germany the great 
Gottfried Wilhelm von Leibniz was sufficiently intrigued by 
the notion to incorporate i t  into his scheme for a universal 
language ; Lewis Carroll devised what he regarded as an im- 
provement over the number alphabet in Richard Grey's 
Memoria Technics, a popular British work on mnemonics 
published in 1730. (A reproduction of Carroll's notes on his 
number alphabet will be found in Warren Weaver's article 
"Lewis Carroll: Mathematician," in Scientific Amer ican  for 
April, 1956.) In  his diary Carroll records that he applied 
his system to lines for memorizing pi to 71 decimals and to 
key words for the logarithms of all prime numbers under 
100. At one time he planned to issue a booklet titled, Log- 
ar i thms  b y  L igh tn ing:  a Mathematical Curiosity.  

The modern form of H6rigone's number alphabet, as cur- 
rently used by all English-speaking memory experts, is 
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MEMORY AIDS 

FIG.  47.  
A "number alphabet" in which consonants stand for  digits. 

shown in the chart of Figure 47. This must be thoroughly 
fixed in the memory before the system can be used profit- 
ably. On the right side of the chart are suggestions which 
may help in memorizing the table. The reader will note that 
only consonants are employed, and that where two or more 
consonants stand for the same digit, they have similar 
sounds. Three consonants- W, H and Y (spelling "why9')- 
do not appear on the chart. 
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Suppose we wish to use this system for remembering that  
mercury boils a t  357 degrees centigrade. Our first step is to 
find a word in which the consonants, taken in order, will 
translate into 357. Such a word readily comes to mind- 
MiLK. The next step is  to associate this word by a vivid 
mental picture with the word "mercury." One way to do this 
is to imagine Mercury, the messenger of the gods, winging 
his way through the clouds with a container of milk in his 
hands. The more preposterous the mental image the more 
easily i t  is retained by the mind. When we wish to recall the 
boiling point of mercury we have only to follow the chain 
of associations from the element to the Greek god to milk to 
357. This may seem like a roundabout means of memorizing 
a number, but no better artificial system has yet been dis- 
covered. I t  is astonishing how firmly the links of the chain 
remain planted in the mind. 

Consider some additional examples. The atomic number 
of the element indium is 49. We can recall this easily by 
linking India with the word Rupee. Neptunium has an 
atomic number of 93;  we imagine Neptune puffiing an 
oPiuM pipe. For tantalum, element 73, we might picture 
Tantalus plugging the hole in his tantalizing cup with a wad 
of chewing G U M .  Platinum, number 78, can be recalled by 
thinking of yourself sporting a pair of platinum C U F F  links. 
Double letters, such as the f's in "cuff," are  regarded as 
single letters. The number alphabet is strictly phonetic. 
Silent consonants, as well as  W, H and Y, are ignored. 

The chart of Figure 48 shows how the system can be used 
for memorizing to three decimal places the square roots of 2, 
3, 5, 6, 7, 8, 10. (The square root of 8 is of course twice the 
square root of 2. Similarly, the square root of 12 can be ob- 
tained by doubling the square root of 3.) Only the first three 
consonants of each key word or phrase are considered. They 
stand for the three decimals of the corresponding square 
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I 1.41 4 I RAT RACE. Think of two rots racing. 

KIMONO. Three suggests triangle. Think 
of a kimono decorated with o pattern of small 
triangles. 

MNEMONIC KEY NUMBER 

ENMESH. F~ve suggests pentagon. Th i~k  of 
the pentagon hopelessly enmeshed in red 
tope. 

SQUARE ROOT 

RARE BEE. SIX suggests hexogon. Think of 
6 2,449 1 the hexagonal cells of o beehve. Crowl~ng 

over the cells I S  o two-headed bee. 

SHEER LINEN Seven suggests the dance of 
seven "ells Thlnk of the "ells as mode of sheer 
l~nen 

8 I828 1 FUNNY FACE. Eght suggests "ole " Th~nk 
of toklng a blte and moklng o funny face. 

F I G .  48 .  
How the number alphabet can be used to memorize square roots. 

10 

root. (The digit preceding the decimal point need not be 
considered since it is obvious.) Many other words can of 
course be substituted for those chosen here. I t  is usually best, 
in fact, to work out your own key words and mental associa- 
tions rather than adopt those of someone else; your inven- 
tions will be closer to your own experience and therefore 
easier to recall. 

Larger numbers can be memorized by taking figures in 
pairs or triplets, devising a suitable word for each group 

3.162 
TOUCH NOSE Ten suggests the flngers. 
Thlnk of touching your nose with all ten of 
them. 
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and linking the words in a chain of striking mental pictures. 
A telephone number, for  example, would be fixed in the 
memory by a chain of images connecting the person or firm 
to the exchange, then to two words which stand for the 
digits in the phone number. 

I t  is by means of such chains of mental pictures that  pro- 
fessional memory experts are able to repeat long lists of ran- 
dom digits immediately after  the list has been read aloud to 
them. This seemingly incredible feat is well within the pow- 
ers of anyone who troubles to spend a few weeks of daily 
practice in mastering the number alphabet. As a first step 
t ry  memorizing the eight digits in the number on a dollar 
bill. Take the digits two a t  a time, forming words in which 
the first two consonants of each word correspond to a pair 
of numbers. For example, if the number is 41-09-15-85, these 
pairs can be translated into the four words: ReD, ZeBra, 
TeLescope, FLozuer. Think first of a red zebra. It holds a 
telescope to its eye. The telescope is trained on a distant 
flower. 

In  choosing words, nouns that  provide vivid pictures are  
of course preferable, though adjectives can often be linked 
conveniently to a following noun, as  in red zebra. In most 
cases the first words that  come to mind are  preferable, and 
each word should be linked to the next one by the most ridic- 
ulous image you can imagine. With practice, appropriate 
words will occur to you more rapidly and you should soon 
be able to form your chain of mental pictures fast enough to 
keep pace with anyone who calls the digits to you slowly. 

Memory experts are  able to form chains of mental asso- 
ciations with extraordinary speed because every pair of dig- 
its immediately suggests to them a picture word taken from 
a previously memorized list. Thus they do not waste time in 
groping for suitable words. Some experts work with pre- 
memorized word lists for three-digit groups. To aid the stu- 
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dents of his memory school in New York, Bruno Furst  
provides them with a printed number dictionary listing a 
variety of appropriate words for each number from 1 to 
1,000. Such lists are not necessary, however, unless you in- 
tend to develop great proficiency in the art .  Suitable words 
can always be devised as you go along if the numbers are 
read to you slowly, and you will discover that  i t  is not a t  all 
difficult to memorize a series of 50 random digits by this 
method. Fortunately long chains of quickly improvised men- 
tal pictures do not remain long in the mind, so if you repeat 
the stunt a day or so later there will be no confusion of the 
new key words with those of the previous demonstration. 

A D D E N D U M  

AMONG the many responses to my request for a mnemonic 
sentence for e, the following seemed to me particularly note- 
worthy : 

To express e, remember to memorize a sentence to sim- 
plify this. (John L. Greene, Beverly Hills, California.) 

To disrupt a playroom is commonly a practice of children. 
(Joseph J. Guiteras, Baldwinsville, New York.) 

By omnibus I traveled to Brooklyn. (David Mage, New 
York, New York.) 

It enables a numskull to memorize a quantity of numerals. 
(Gene Widhoff, Burbank, California.) 

The Enciclopedia universal ilustrada, in an  article on 
"Mnemotecnia," gives the following Spanish sentence for e :  
T e  ayudare' a recordar la cantidad a indoctos si  rele'esme 
bien. Several Italian verses for e will be found on page 755 
of Matematica Dilettevole e Curiosa by Italo Ghersi. 
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Nine More Problems 

1 .  THE T O U C H I N G  CIGARETTES 

FOUR golf balls can be placed so that each ball touches the 
other three. Five half-dollars can be arranged so that each 
coin touches the other four [see Fig. 491. 

Is  i t  possible to place six cigarettes so that each touches 
the other five? The cigarettes must not be bent or broken. 



FIG. 5 0 .  

2 .  T W O  F E R R Y B O A T S  

TWO ferryboats start a t  the same instant from opposite 
sides of a river, traveling across the water on routes a t  right 
angles to the shores. Each travels a t  a constant speed, but 
one is faster than the other. They pass a t  a point 720 yards 
from the nearest shore. Both boats remain in their slips for 
10 minutes before starting back. On the return trips they 
meet 400 yards from the other shore. 

How wide is the river? 

3 .  G U E S S  T H E  D I A G O N A L  

A rectangle is inscribed in the quadrant of a circle as shown 
[Fig. 501. Given the unit distances indicated, can you accu- 
rately determine the length of the diagonal AC? 

Time limit : one minute ! 

4 .  T H E  E F F I C I E N T  E L E C T R I C I A N  

AN electrician is faced with this annoying dilemma. In the 
basement of a three-story house he finds bunched together 
in a hole in the wall the exposed ends of 11 wires, all alike. 
In a hole in the wall on the top floor he finds the other ends 
of the same 11 wires, but he has no way of knowing which 
end above belongs to which end below. His problem: to 
match the ends. 

To accomplish his task he can do two things: (1) short- 
circuit the wires a t  either spot by twisting ends together in 
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any manner he wishes ; (2) test for  a closed circuit by means 
of a "continuity tester" consisting of a battery and a bell. 
The bell rings when the instrument is applied to two ends 
of a continuous, unbroken circuit. 

Not wishing to exhaust himself by needless stair-climbing, 
and having a passionate interest in operations research, the 
electrician sat down on the top floor with pencil and paper 
and soon devised the most efficient possible method of label- 
ing the wires. 

What was his method? 

5 .  CROSS THE N E T W O R K  

ONE of the oldest of topological puzzles, familiar to many 
a schoolboy, consists of drawing a continuous line across the 
closed network shown in Figure 51 so that  the line crosses 
each of the 16 segments of the network only once. The 
curved line shown here does not solve the puzzle because it 
leaves one segment uncrossed. No "trick" solutions are  al- 
lowed, such as  passing the line through a vertex or along 
one of the segments, folding the paper, and so on. 

I t  is not difficult to prove that  the puzzle cannot be solved 
on a plane surface. Two questions: Can i t  be solved on the 
surface of a sphere? On the surface of a torus (doughnut) ? 

6 .  THE TWELVE M A T C H E S  

ASSUMING that  a match is a unit of length, i t  is possible 
to place 12 matches on a plane in various ways to form poly- 
gons with integral areas. Figure 52 shows two such poly- 
gons : a square with an  area of nine square units, and a cross 
with an  area of five. 

The problem is this : Use all 12 matches (the entire length 
of each match must be used) to form in similar fashion the 
perimeter of a polygon with an  area of exactly four square 
units. 
F I G .  5 1 .  



7.  HOLE I N  THE SPHERE 

THIS incredible problem- incredible because it seems to 
lack sufficient data for a solution- appeared in a recent is- 
sue of The Graham Dial, a publication of Graham Trans- 
missions Inc. A cylindrical hole six inches long has been 
drilled straight through the center of a solid sphere. What 
is the volume remaining in the sphere? 

8 .  THE A M O R O U S  B U G S  

FOUR BUGS-A, B, C and D- occupy the corners of a 
square 10 inches on a side [Fig. 531. A and C are male, B and 
D are female. Simultaneously A crawls directly toward B, 
B toward C, C toward D and D toward A. If all four bugs 
crawl a t  the same constant rate, they will describe four con- 
gruent logarithmic spirals which meet a t  the center of the 
square. 

How far does each bug travel before they meet? The prob- 
lem can be solved without calculus. 

101 

FIG.  5 3 .  1 
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9.  H O W  M A N Y  C H I L D R E N ?  

"I HEAR some youngsters playing in the back yard," said 
Jones, a graduate student in mathematics. "Are they all 
yours?" 

"Heavens, no," exclaimed Professor Smith, the eminent 
number theorist. "My children are playing with friends 
from three other families in the neighborhood, although our 
family happens to be largest. The Browns have a smaller 
number of children, the Greens have a still smaller number, 
and the Blacks the smallest of all." 

"How many children are there altogether?" asked Jones. 
"Let me put,it this way," said Smith. "There are fewer 

than 18 children, and the product of the numbers in the four 
families happens to be my house number which you saw 
when you arrived." 

Jones took a notebook and pencil from his pocket and 
started scribbling. A moment later he looked up and said, 
"I need more information. Is there more than one child in 
the Black family ?" 

As soon as Smith replied, Jones smiled and correctly 
stated the number of children in each family. 

Knowing the house number and whether the Blacks had 
more than one child, Jones found the problem trivial. I t  is a 
remarkable fact, however, that the number of children in 
each family can be determined solely on the basis of the in- 
formation given above ! 

A N S W E R S  

1. There are several different ways of placing the six ciga- 
rettes. Figure 54 shows the traditional solution as it is given 
in several old puzzle books. 

To my vast surprise, about fifteen readers discovered that 
seven cigarettes could also be placed so that each touched 



all of the others ! This of course makes the older puzzle obso- 
lete. Figure 55, sent to me by George Rybicki and John Rey- 
nolds, graduate students in physics a t  Harvard, shows how 
it is done. "The diagram has been drawn," they write, "for 
the critical case where the ratio of length to diameter of the 
cigarettes is 7/2 d-3. Here the points of contact occur right 
a t  the ends of the cigarettes. The solution obviously will 
work for any length-to-diameter ratio greater than 7/2 \/3. 
Some observations on actual 'regular' size cigarettes give 
a ratio of about 8 to 1, which is, in fact, greater than 7/2 d q  
so this is an acceptable solution." Note that if the center cig- 
arette, pointing directly toward you in the diagram, is with- 
drawn, the remaining six provide a neat symmetrical solu- 
tion of the original problem. 

2. When the ferryboats meet for the first time [ top  o f  Fig. 
561, the combined distance traveled by the boats is equal to 
the width of the river. When they reach the opposite shore, 
the combined distance is twice the width of the river; and 
when they meet the second time [bot tom o f  Fig. 561, the total 
distance is three times the river's width. Since the boats 
have been moving a t  a constant speed for the same period 
of time, i t  follows that each boat has gone three times as fa r  
as when they first met and had traveled a combined distance 
of one river-width. Since the white boat had traveled 720 
yards when the first meeting occurred, its total distance a t  
the time of the second meeting must be 3 X 720, or 2,160 
yards. The bottom illustration shows clearly that this dis- 
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tance is 400 yards more than the river's width, so we sub- 
tract 400 from 2,160 to obtain 1,760 yards, or one mile, as 
the width of the river. The time the boats remained a t  their 
landings does not enter into the problem. 

The problem can be approached in other ways. Many read- 
ers solved it as follows. Let x equal the river-width. On the 
first tr ip the ratio of distances traveled by the two boats is 
x - 720: 720. On the second trip it is 2x - 400: x + 400. 
These ratios are equal, so i t  is easy to solve for x. (The 
problem appears in Sam Loyd's Cyclopedia o f  Puzz les ,  1914, 
page 80.) I 

F I G .  5 7 .  
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3. Line AC is one diagonal of the rectangle [Fig. 571. The 
other diagonal is clearly the 10-unit radius of the circle. 
Since the diagonals are equal, line AC is 10 units long. 

4. On the top floor the electrician shorted five pairs of 
wires (the shorted pairs are connected by broken lines in 
Figure 5 8 ) ,  leaving one free wire. Then he walked to the 
basement and identified the lower ends of the shorted pairs 
by means of his "continuity tester." He labeled the ends as 
shown, then shorted them in the manner indicated by the 
dotted lines. 

TOP FLOOR 

BASEMENT 

F I G .  5 8 .  

Back on the top floor, he removed all the shorts but left 
the wires twisted at insulated portions so that the pairs 
were still identifiable. He then checked for continuity be- 
tween the free wire (which he knew to be the upper end of 
F) and some other wire. When he found the other wire, he 
was able at  once to label it E2 and to identify its mate as 
El .  He next tested for continuity between E l  and another 
end which, when found, could be marked D2 and its mate 
Dl .  Continuing in this fashion, the remaining ends were 
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easily identified. The procedure obviously works for any odd 
number of wires. 

J. G. Fletcher, Princeton, New Jersey, was the first to 
send a method of applying the above procedure, with a slight 
modification, to any even number of wires except two. As- 
sume there is a twelfth wire on the fa r  right in Figure 58. 
The same five pairs are shorted on the top floor, leaving two 
free wires. In  the basement, the wires are shorted as before, 
and the twelfth wire is labeled G. Back on the top floor, G is 
easily identified as  the only one of the two free wires in 
which no continuity is found. The remaining eleven wires 
are than labeled as previously explained. 

I n  some ways a more efficient procedure, which takes care 
of all cases except two wires (two wires have no solution), 
was sent in by D. N. Buell, Detroit; R. Elsdon-Dew, Durban, 
South Africa; Louis Katz and Fremont Reizman, physics 
students a t  the University of Wisconsin; and Danforth K. 
Gannett, Denville, New Jersey. Mr. Gannett explained i t  
clearly with the diagram for fifteen wires shown in Figure 
59. The method of labeling is as follows: 
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1. Top floor: short wires in groups of 1, 2, 3, 4. . . . Label 
the groups A, B, C, D. . . . The last group need not be com- 
plete. 

2. Basement : identify the groups by continuity tests. Num- 
ber the wires and short them in groups Z, Y, X, W, V. . . . 

3. Top floor: remove the  shorts. Continuity tests will now 
uniquely identify all wires. Wire 1 is of course A. Wire 3 is 
the only wire in group B that  has continuity with 1. I ts  
mate will be 2. In  group C, only wire 6 connects with 1. Only 
5 connects with 2. The remaining wire in C will be 4. And 
so on for the other groups. 

The chart can be extended to the right as f a r  as desired. 
To determine the procedure for n wires, simply cover the 
chart beyond the nth wire. 

5. A continuous line that  enters and leaves one of the rec- 
tangular spaces must of necessity cross two line segments. 
Since the spaces labeled A, B and C in Figure 60 are each 
surrounded by an odd number of segments, i t  follows that 
an end of a line must be inside each if all segments of the 
network are crossed. But a continuous line has only two 
ends, so the puzzle is insoluble on a plane surface. This same 

FIG.  6 0 .  
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reasoning applies if the network is on a sphere or on the side 
of a torus [ d r a w i n g  at lozuer l e f t ] .  However, the network 
can be drawn on the torus [ d r a w i n g  a t  l o w e r  r i g h t ]  so that 
the hole of the torus is i n s i d e  one of the three spaces, A, B 
and C. When this is done, the puzzle is easily solved. 

6. Twelve matches can be used to form a right triangle 
with sides of three, four and five units, as shown a t  left 
in Figure 61. This triangle will have an area of six square 
units. By altering the position of three matches as shown a t  
right in the illustration, we remove two square units, leav- 
ing a polygon with an area of four. 

The above solution is the one to be found in many puzzle 
books. There are hundreds of other solutions. Elton M. 
Palmer, Oakmont, Pennsylvania, correlated this problem 
with the polyominoes of the next chapter, pointing out that 
each of the five tetrominoes (figures made with four squares) 

F I G .  62.  
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can provide the base for a large number of solutions. We 
simply add and subtract the same amount in triangular 
areas to accommodate all twelve matches. Figure 62 depicts 
some representative samples, each row based on a different 
tetromino. 

Eugene J. Putzer, staff scientist with the General Dy- 
namics Corporation; Charles Shapiro, Oswego, New York; 
and Hugh J. Metz, Oak Ridge, Tennessee, suggested the s tar  
solution shown in Figure 63. By adjusting the width of the 
star's points you can produce any desired area between 0 
and 11.196, the area of a regular dodecagon, the largest area 

7.  Without resorting to calculus, the problem can be solved 
as follows. Let R be the radius of the sphere. As Figure 64 
indicates, the radius of the cylindrical hole will then be the 
square root of RL 9, and the altitude of the spherical caps 
a t  each end of the cylinder will be R - 3. To determine the 
residue after the cylinder and caps have been removed, we 
add the volume of the cylinder, 67 (R2 - 9 ) ,  to twice the 
volume of the spherical cap, and subtract the total from the 
volume of the sphere, 4nR3/3. The volume of the cap is ob- 
tained by the following formula, in which A stands for its 
altitude and r for its radius: TA (3r2 + A2)/6. 

When this computation is made, all terms obligingly can- 
cel out except 36n- the volume of the residue in cubic 
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inches. In  other words, the residue is constant regardless of 
the hole's diameter or the size of the sphere! 

The earliest reference I have found for this beautiful 
problem is on page 86 of Samuel I. Jones's Mathematical 
Nuts, 1932. A two-dimensional analog of the problem ap- 
pears on page 93 of the same volume. Given the longest pos- 
sible straight line that  can be drawn on a circular track of 
any dimensions [see Fig. 651, the area of the track will equal 
the area of a circle having the straight line as a diameter. 

John W. Campbell, Jr., editor of Astounding Science Fic- 
tion, was one of several readers who solved the sphere prob- 
lem quickly by reasoning adroitly as follows : The problem 
would not be given unless i t  has a unique solution. If i t  has 
a unique solution, the volume must be a constant which 
would hold even when the hole is reduced to zero radius. 
Therefore the residue must equal the volume of a sphere 
with a diameter of six inches, namely 3 6 ~ .  

F I G .  6 5 .  

8. At any given instant the four bugs form the corners of 
a square which shrinks and rotates as the bugs move closer 
together. The path of each pursuer will therefore a t  all 
times be perpendicular to the path of the pursued. This tells 
us that  as A, for example, approaches B, there is no com- 
ponent in B's motion which carries B toward or away from 
A. Consequently A will capture B in the same time that  i t  
would take if B had remained stationary. The length of each 
spiral path will be the same as the side of the square: 10 
inches. 
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If three bugs start  from the corners of an  equilateral 
triangle, each bug's motion will have a component of 1/2 
(the cosine of a 60-degree angle is 1/2) its velocity that will 
carry it toward its pursuer. Two bugs will therefore have a 
mutual approach speed of 3/2 velocity. The bugs meet a t  the 
center of the triangle after a time interval equal to twice 
the side of the triangle divided by three times the velocity, 
each tracing a path that  is 2/3 the length of the triangle's 
side. 

9. When Jones began to work on the professor's problem 
he knew that  each of the four families had a different num- 
ber of children, and that the total number was less than 18. 
He further knew that  the product of the four numbers gave 
the professor's house number. Therefore his obvious first 
step was to factor the house number into four different 
numbers which together would total less than 18. If there 
had been only one way to do this, he would have immediate- 
ly solved the problem. Since he could not solve i t  without 
further information, we conclude that  there must have been 
more than one way of factoring the house number. 

Our next step is to write down all possible combinations 
of four different numbers which total less than 18, and ob- 
tain the products of each group. We find that  there are many 
cases where more than one combination gives the same prod- 
uct. How do we decide which product is the house number? 

The clue lies in the fact that Jones asked if there was more 
than one child in the smallest family. This question is mean- 
ingful only if the house number is 120, which can be factored 
a s l X 3 x  5 X 8 , 1 X 4 X 5 X 6 , o r 2 X 3 X 4  X 5 .  Had 
Smith answered "No," the problem would remain unsolved. 
Since Jones did solve it, we know the answer was "Yes." 
The families therefore contained 2, 3, 4 and 5 children. 

This problem was originated by Lester R. Ford and pub- 
lished in the A m e r i c a n  Mathema t i ca l  M o n t h l y ,  March 1948, 
as Problem E776. 
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Pol y orninoes 

T HE TERM "polyomino" was introduced by Solomon W. 
Golomb, senior research mathematician in the Jet Propul- 

sion Laboratory of the California Institute of Technology. 
In his article "Checker Boards and Polyominoes" (pub- 
lished in the Amer ican  Mathematical Month ly  in 1954 when 
Golomb was a 22-year-old graduate student a t  Harvard) he 
defined a polyomino as a "simply connected" set of squares. 
By this is meant a set of squares joined along their edges. 
A chess player might say, Golomb adds, that they are "rook- 
wise connected," because a rook could travel from any 
square to any other square in a finite number of moves. 
Figure 66 shows a monomino and all varieties of polyomi- 
noes with two, three and four connected squares. 

There is only one type of domino, two trominoes and five 
tetrominoes. When we turn to the pentominoes (five squares) 
the number jumps to twelve. These are shown in Figure 67. 
Asymmetrical pieces, which have a different shape when 
"turned over," are considered as single types. In  all the 
polyomino recreations to be taken up in this chapter, asym- 



MONOMINO 

DOMINO 

TRAIGHT TROMINO 

RIGHT TROMINO 
. . 

STRAIGHT 
TETROMINO 

UARE TETROMINO 

T-TETROMINO 

I 

SKEW 

.-TETROMINO 

TETROMINO 

FIO. 67. 
The twelve pentominoes. (above) 

FIG. 66. 

( l e f t )  

metrical pieces may be placed in either of their two mirror- 
image forms. 
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The number of distinct polyominoes of any order is clear- 
ly a function of the number of squares in each, but so f a r  no 
one has succeeded in finding a formula relating the number 
of n-ominoes to n. To compute the number of polyominoes 
of higher orders one must fall back on clumsy, time-consum- 
ing procedures. There are 35 distinct varieties of hexomi- 
noes and 108 varieties of heptominoes. This latter figure 
includes the debatable heptomino shown in Figure 68. In  
most polyomino recreations i t  is best to exclude forms of 
this type (there are six of them among the octominoes) 
which have interior "holes." 

FIG.  6 8 .  

In  Chapter 3 (problem 3)  we considered a polyomino 
problem dealing with the placing of dominoes on a mutilated 
checkerbciard. Golomb's article discusses a variety of in- 
triguing similar problems involving higher-order polyomi- 
noes. I t  obviously is not possible to cover an 8-by-8 check- 
erboard with trominoes (because 64 squares are not evenly 
divisible by 3 ) ,  but can i t  be covered with 21 straight tromi- 
noes and one monomino? By a clever system of coloring the 
squares with three colors, Golomb shows this to  be possible 
only when the monomino is placed on one of the four dark- 
ened squares in Figure 69. On the other hand, an ingenious 
induction argument demonstrates that  21 right trominoes 
and one monomino will cover the 8-by-8 board regardless of 
where the monomino is placed. It also is possible to cover 
the board with 16 tetrominoes provided they are all of the 
same species, the only exception being the skew tetromino, 
which will not even cover a single edge of the checkerboard. 
A striped coloring of the board serves to prove that  i t  can- 



Polyominoes 

F I G .  6 9 .  

not be covered with 15 L-tetrominoes and one square tetro- 
mino; a sawtooth coloring proves i t  cannot be covered 
with a square tetromino plus any combination of straight 
and skew tetrominoes. 

Turning to the pentominoes of Figure 67, the question 
immediately suggests itself : will these twelve forms, together 
with one square tetromino, form an  8-by-8 checkerboard? 
The first published solution of this problem appears in 
Henry Dudeney's The  Canterbury Puzzles, 1907. In Dude- 
ney's solution the square occupies a side position. About 
twenty years ago the readers of an obscure British publica- 
tion called T h e  Fairy Chess Review (fairy chess is chess 
played with unusual rules, boards, or pieces) began experi- 
menting with Dudeney's problem as well as with other pen- 
tomino and hexomino patterns. The most interesting results 
were summarized in the December 1954 issue of the maga- 
zine. Much of what follows is drawn from this issue; also 
from an unpublished article by Golomb in which he deals 
with parallel but independently discovered theorems. 

T. R. Dawson, founder of T h e  Fairy Chess Review, was 
the first to devise a delightfully simple way to prove that  
Dudeney's problem can be solved with the square a t  any 
position on the board. His three-part solution is depicted in 
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Figure 70. The square tetromino is combined wiBh the 
L-shaped pentomino to form a 3-by-3 square. By rotating 
the larger square, the square tetromino can be brought to 
four different positions in each of the three configurations. 
Since the entire checkerboard can be both rotated and re- 
flected, i t  is easy to see that  the square tetromino can be 
placed a t  any desired spot on the board. 

F I G .  7 0 .  
T. R. Dawson's proof. 

No one knows how many different solutions of this prob- 
lem there are altogether, but a conservative guess is that  
there are more than 10,000. In 1958 Dana S. Scott (then a 
mathematics graduate student at Princeton University), 
working under contract with the Information Systems 
Branch of the Office of Naval Research, instructed MANIAC, 
a digital computer, to search for all possible solutions 
which had the square piece exactly in the center. In an  op- 
erating time of about three and one-half hours the machine 
produced an exhaustive list of 65 distinct solutions, not 
counting additional solutions that  can be obtained by rota- 
tions and reflections. 

In programing the computer i t  was convenient to break 
down the solutions into three categories, each defined by the 
position of the cross relative to the central square. A solu- 
tion in each category is shown in Figure 71. The machine 
found 20 solutions of the first type, 19 of the second type 
and 26 of the third. 
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An inspection of the 65 solutions discloses a number of 
interesting facts. No solution is possible in which the 
straight pentomino does not have a long side flush with an 
edge of the board. (This does not hold for solutions with the 
square in other positions than the center.) Seven solutions 
(all in categories 1 and 3)  are without "crossroads," that  is, 
points where the corners of four pieces meet. The first solu- 
tion in Figure 71 is of this type. From an artistic stand- 
point, some polyomino experts have considered crossroads 
to be blemishes in a design. The third solution of Figure 71 
illustrates another interesting feature : a straight line on 
which the pattern can be folded in half. There -are 12 pat- 
terns of this type, all in the third category and none free of 
crossroads. 

If the square tetromino is discarded and four discon- 
nected unit squares left open, the 8-by-8 checkerboard can 
still be formed in a large number of artistic ways. Three 
such patterns are shown in Figure 72. It also is possible to 
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fit the twelve pentominoes into rectangles that are 6-by-10, 
5-by-12, 4-by-15 and 3-by-20 [see Fig. 731. The 3-by-20 rec- 
tangle, by all odds the most difficult, is left for the interested 
reader to construct. It has only two distinct solutions, not 
counting rotations and reflections. 

Note that the 5-by-12 rectangle in Figure 73 is shown 
here with a solution that contains a 5-by-7 and a 5-by-5 rec- 

F I G .  73 .  
Pentomino rectangles. 
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tangle. Several readers discovered the two 5-by-6 rectangles 
shown in Figure 74, which can be put together to make 
either a 5-by-12 or a 6-by-10 rectangle. 

Raphael M. Robinson, professor of mathematics a t  the 
University of California, recently proposed what he calls 
"the triplicat,ion problem." You select one pentomino, then 
use nine of the remaining ones to form a large scale-model 
of the chosen piece. The model will be three times higher 

FIG.  7 4 .  

and wider than the small one. Joseph B. Tucker, rector of 
Trinity Episcopal Church in Clarksville, Tennessee, inde- 
pendently hit on the triplication problem after reading this 
department's discussion of pentominoes. He sent in many 
excellent solutions, including the two shown in Figure 75. 
The triplication problem can be solved for each of the twelve 
pieces. 

Somewhat similar problems were proposed by other read- 
ers. Harry Brueggemann of San Marino, California, sug- 
gested what he termed the "double double problem." You 
first form any desired shape with two pentominoes. You 
duplicate i t  with two other pieces. Finally, the remaining 
eight pieces are used to form the same shape but twice as 
large. Figure 76 shows a typical solution. Paul J. Slate of 
West Orange, New Jersey, proposed using all twelve pieces 
to make a 5-by-13 rectangle with a hole in the shape of one 
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F I G .  75. 
Triplication patterns. 

F I G .  76. 
A "double double" pattern. 
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of the pieces. I t  can be solved with a hole in the form of 
each pentomino. One such solution is depicted in Figure 77. 

F I G .  7 7 .  

Another interesting pentomino problem, proposed in The 
Fairy Chess Review by H. D. Benjamin, is shown in Figure 
78. The twelve pentominoes will exactly cover a cube that  is 
the square root of ten units on the side. The cube is formed 
by folding the pattern along the dotted lines. 

What is the minimum number of pentominoes that can be 
placed on a checkerboard in such a way that  i t  is impossible 
to place any of the remaining pentominoes on the board? 
This intriguing question is asked by Golomb, and he says 
the answer is five. Figure 79 shows one such configuration. 
This problem suggested to Golomb a fascinating competitive 
game that  can be played on a checkerboard with large card- 
board pentominoes cut to fit accurately over the board's 
squares. (The reader is invited to make such a set, not only 
to enjoy the game, but also to solve pentomino problems and 
create new ones.) 

Two or more players take turns in choosing a single pen- 
tomino and placing i t  wherever they wish on the board. The 
pieces have no "top" or "bottom" faces. As in all problems 
mentioned in this article, asymmetrical pieces may be used 
with either side up. The first player who is unable to place 
a piece is the loser. 
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FIG.  78 .  

A pentomino cube. 

Golomb writes: "The game will last a t  least five and a t  
most 12 moves, can never result in a draw, has more pos- 
sible openings than chess, and will intrigue players of all 
ages. It is difficult to advise what strategy should be fol- 
lowed, but there are two valuable principles: 

"1. Try to move in such a way that there will be room for 
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an even number of pieces. (This assumes only two are play- 
ing.) 

"2. If you cannot analyze the situation, do something to 
complicate the position, so that the next player will have 
even more difficulty analyzing i t  than you did." 

FIG.  79. 
The pentomino game. 

Since the 35 hexominoes have a total area of 210 squares, 
one thinks immediately of arranging them to form a rec- 
tangle which could be 3-by-70, 5-by-42, 6-by-35, 7-by-30, 10- 
by-21 or 14-by-15. I seriously considered offering $1,000 to 
the first reader who succeeded in constructing one of these 
six rectangles, but the appalling thought of hours that might 
be wasted on the challenge forced me to relent. All such 
efforts are doomed to failure. Golomb's proof of this is a 
striking example of the use of two powerful tools of com- 
binatorial geometry. This is a little known branch of mathe- 
matics, though it has many practical applications to engin- 
eering design problems involving standard components that 
must be fitted together in the most efficient manner. The 
tools are: (1) the use of contrasting colors to aid one's 
mathematical intuition, and (2) the principle of "parity 
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check" based on the combinatorial properties of odd and 
even numbers. 

We begin the proof by coloring our desired rectangles 
with alternating black and white squares like a checker- 
board. In each case the rectangle clearly must contain 105 
black squares and 105 white-an odd number for each. 

Turning our attention to the 35 hexominoes, we discover 
that  24 of them will always cover three black squares and 
three white-an odd number for each. There is an even 
number of these "odd hexominoes," and since even times 
odd is even, we know that  all 24 of them will cover an even 
number of squares of each color. 

The remaining 11 hexominoes are of such a shape that  
each must cover four squares of one color and two of the 
other- an even number for each. There is an odd number 
of these "even hexominoes," but again, since even times odd 
is even, we know that  these 11 pieces also will cover an even 
number of squares of each color. (Figures 80 and 81 divide 
the 35 hexominoes into even and odd groups.) Finally, since 
even plus even is even, we conclude that  the 35 hexominoes 
together will cover an even number of black squares and an 
even number of white squares. Unfortunately each rectangle 
contains 105 squares of each color. This is an  odd number. 
No rectangle, therefore, can be covered by the 35 hexomi- 
noes. 

"There is a lesson in plausible reasoning to be learned 
from these problems," Golomb concludes. "Given certain 
basic data, we labor long and hard to fit them into a pattern. 
Having succeeded, we believe the pattern to be the only one 
that  'fits the facts'; indeed, that  the data are merely mani- 
festations of the beautiful, comprehensive whole. Such rea- 
soning has been used repeatedly in religion, in politics, even 
in science. The pentominoes illustrate that  many different 
patterns may be possible from the same 'data,' all equally 
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FIG. 8 0 .  
The 24 "odd" hexominoes. 
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The 
FIG. 81. 

"even" hexomin 
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valid, and the nature of the pattern we end up with is deter- 
mined more by the shape we are looking for than by the 
data a t  hand. I t  is also possible that for certain data [as in 
the hexomino problem explained above], no pattern of the 
type we are conditioned to seek may exist." 

A D D E N D U M  

FOR READERS who may wish to experiment with hexomino 
patterns, I add here [Figs. 82 and 831 two striking designs 

FIG. 8 2 .  
A hexomino pattern. 

reproduced from The Fairy Chess Review. Each is formed 
with the complete set of 35 hexominoes. Patterns using the 
entire set cannot be made unless a checkerboard coloring of 
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FIG. 83.  
Another hexomino design. 

the squares shows an excess of squares of one color in the 
amount of 2, 6,10,14, 18 or 22. 

A box of colored plastic pentominoes was marketed in 
1957 by Tryne Products, Inc., 233 Broadway, New York, 
New York, under the trade name of Hexed. 



C H A P T E R  F O U R T E E N  

Fallacies 

A MATHEMATICAL paradox can be defined as a mathe- 
matical truth so startling that it is difficult to believe 

even after every step of its proof has been verified. Mathe- 
matical fallacies are equally astonishing assertions, but un- 
like mathematical paradoxes their proofs contain subtle 
errors. Every branch of mathematics, from simple arith- 
metic to modern topological set theory, has its share of these 
counterfeit arguments. The better ones are of course those 
with the most incredible conclusions and the best-camou- 
flaged errors. Euclid devoted an  entire book to geometrical 
fallacies, but his manuscript did not survive, so we can only 
speculate on what this lost classic of recreational mathe- 
matics may have contained. 

The following seven fallacies have been selected for their 
variety and interest. They will not be explained, but the 
reader may find i t  pleasant and instructive to seek out their 
errors. 
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Our first fallacy is an exceedingly elementary one. We 
shall introduce i t  by way of an  amusing paradox which 
David Hilbert, the great German mathematician, liked to 
employ to illustrate one of the peculiar properties of aleph- 
null, the smallest of the transfinite numbers. It seems that 
the manager of a celestial hotel with an infinite number of 
rooms, all occupied, wishes to accommodate a new guest. He 
does so by moving each occupant to a room with the next 
highest number, thereby vacating Room 1. What can he do 
if an infinite number of new guests arrive? The undismayed 
manager simply shifts each occupant to a room that has a 
number twice as large as that of his first room; the guest 
in Room 1 goes to Room 2, the guest in 2 goes to 4, 3 to 6, 4 
to 8, and so on. This opens up all the odd-numbered rooms, 
which will accommodate every one. 

But is it really necessary that  the number of occupied 
rooms be infinite before additional guests can be accom- 
modated? The following doggerel from a late 19th-century 
British magazine tells how a clever innkeeper with nine 
empty rooms had no difficulty in providing separate lodgings 
for each of 10 travelers. 

T e n  zoeary, footsore travelers, 
All in a zuoeful plight, 

Sought  shelter a t  a wayside inn 
One dark and s tormy  night.  

" N i n e  rooms, n o  more," the  landlord said, 
"Have I t o  o f f e r  you. 

T o  each o f  eight a single bed, 
B u t  the  n i n t h  m u s t  serve for  tzuo." 

A d in  arose. T h e  troubled host 
Could only scratch his head, 

For o f  those tired m e n  n o  tzoo 
Would occupy one bed. 
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The puzzled host was  soon a t  ease- 
He was a clever man- 

And so t o  please his guests devised 
Th i s  most ingenious plan. 

I n  room marked A two m e n  were placed, 
T h e  third was lodged in B, 

The  four th  to C was then  assigned, 
The  fifth retired to D. 

I n  E the s ixth he tucked away,  
I n  F the seventh man,  

The  eighth and n in th  in G and H ,  
And then to A he ran, 

Wherein the host, as I have said, 
Had laid two travelers b y ;  

Then  taking one- the ten th  and last- 
He lodged h i m  sa fe  in I.  

Nine single rooms- a room for  each- 
Were  made to serve f o r  ten;  

And this i t  is  that puzzles m e  
And many  wiser men. 

A slightly more sophisticated fallacy is the following alge- 
braic proof that  any number a is equal to a smaller num- 
ber b. 

a = b + c  
Multiply both sides by a - b to obtain : 

a2 - ab = ab f ac - b2 - bc 
Move ac to the left side: 

a2  - ab - ac = a b  - b2 - bc 
Factor : 

a ( a - b - c )  = b ( a - b - C )  
Divide each side by a - b - c to get: 

a = b  
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Manipulation of the imaginary number i (the square root 
of - 1) has many pitfalls, as witnessed by the following 
tantalizing proof: 

d T  = +T 

In plane geometry most fallacies hinge on an improperly 
constructed diagram. Consider for example this perplexing 
demonstration that the front side of a polygon cut out of a 
piece of paper has an area which differs from that  of the 
back side. The demonstration was devised by L. Vosburgh 
Lyons, a New York neuropsychiatrist, to  exploit a curious 
principle recently discovered by Paul Curry, also of New 
York. 

First draw on a sheet of graph paper the 60-square-unit 
triangle shown in Figure 84. Cut along the lines to make six 
pieces, then color the back of each piece. If all six pieces 
are turned over and a co1ore.d triangle formed as shown in 
the middle of the illustration, i t  will be found that  the tri- 
angle has developed a hole of two square units. In other 
words, its area has shrunk to 58 square units. If we turn  
three pieces so that  their white sides are uppermost, leaving 
three colored pieces, we can form the figure shown a t  the 
bottom of the illustration. This has the in-between area of 
59 square units. Something is obviously wrong here, but 
what? 

Probability theory swarms with plausible but specious 
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lines of reasoning. Suppose you have just met your friend 
Jones and each of you is wearing a necktie that your wife 
gave you for Christmas. You begin to argue over which of 
you received the more expensive tie. You and Jones finally 
agree to settle the matter by visiting the store where both 
ties were bought and checking their value. The man who 
wins (that  is, has the most expensive tie) must give his tie 
to the loser as a consolation. 

This is how you reason: "The chances that  I will win the 
argument or lose i t  are equal. If I win, I will be poorer by 
the value of this tie I am wearing. But if I lose, I am sure 
to gain a more expensive tie. Therefore the contest is clear- 
ly to my advantage." 

Of course Jones can reason in exactly the same way. How 
can a bet be favorable to both parties? 

One of the most surprising paradoxes of topology is the 
fact that a torus (a  doughnut-shaped surface) can be turned 
inside out through a hole in its side by stretching the sur- 
face without tearing it. There is no question about this. 
When the steps in the process were depicted in Scientific 
American for January 1950, a New Jersey engineer actually 
shipped the magazine an inner tube which he had reversed. 
But if this can be done, then an even more remarkable fact 
seems to emerge. 

On the outside of a torus paint the ring a t  right in the 
upper illustration of Figure 85. On the inside of the same 
torus paint a second ring. These two closed curves are clear- 
ly linked. The torus is now turned inside out through the 
hole. As the bottom illustration shows, this moves the first 
ring to the inside and the second ring to the outside. The 
rings are no longer linked ! This obviously violates a funda- 
mental topological law which states that  two linked curves 
cannot be separated without breaking one curve and passing 
the other through the break. 
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F I G .  85. 
Two linked rings appear to unlink when torus is turned inside out 
through hole in its side. 
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Our final fallacy, which draws on elementary number 
theory, concerns "interesting" v. "uninteresting" numbers. 
Numbers can of course be interesting in a variety of ways. 
The number 30 was interesting to George Moore when he 
wrote his famous tribute to "the woman of 30,'' the age a t  
which he believed a married woman was most fascinating. 
To a number theorist 30 is more likely to be exciting be- 
cause i t  is the largest integer such that all smaller integers 
with which i t  has no common divisor are prime numbers. 
The number 15,873 is intriguing because if you multiply i t  
by any digit and then by 7, the result will consist entirely 
of repetitions of the chosen digit. The number 142,857 is 
even more fascinating. Multiply i t  by any digit from 1 
through 6 and you get the same six digits in the same cyclic 
order. 

The question arises: Are there any uninteresting num- 
bers? We can prove that  there are none by the following 
simple steps. If there are dull numbers, we can then divide 
all numbers into two sets- interesting and dull. In the set 
of dull numbers there will be only one number that is the 
smallest. Since i t  is the smallest uninteresting number i t  be- 
comes, ipso facto, an  interesting number. We must therefore 
remove i t  from the dull set and place i t  in the other. But now 
there will be another smallest uninteresting number. Repeat- 
ing this process will make any dull number interesting. 

A D D E N D U M  

Two READERS favored me with ninth stanzas for the poem 
about the ten weary, footsore travelers. (This poem ap- 
peared, by the way, in the magazine Current Literature, 
Vol. 2, April 1889, page 349. No author's name is given, but 
i t  is credited to the Pittsburgh Bulletin, no date. The para- 
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dox is much older than the poem; still i t  would be interest- 
ing to know who gave i t  this poetic form.) Ralph W. Allen 
of Los Angeles wrote: 

I had not heard the din that night 
As number ten raised hue and cry- 

'Twas number two- not number ten- 
That bedded dozon in room marked I. 

John F. Mooney, of the Ebasco International Corporation, 
New York, New York, exposed the fallacy this way: 

If zoe reflect on tohut he's done, 
We'll see we're n,ot insane. 

Tzoo men in A,  he's counted one, 
Not once, but once again. 

The fallacy which disturbed most readers was the one 
about the inside-out torus. I t  is true that  the torus can be 
reversed, but the reversal changes the "grain," so to speak, 
of the torus. As a result, the two rings exchange places and 
remain linked. Several readers made excellent models by 
cutting off the upper part  of a sock, then sewing the ends of 
the upper part  together to make the torus. The rings con- 
sisted of thread, in two contrasting colors, stitched to the 
outside and inside of the cloth torus. Such a torus reverses 
easily through a hole in the side, demonstrating most effec- 
tively exactly what happens to the rings. 

For  a detailed explanation of the triangle paradox and a 
host of related ones, the reader is referred to the two chap- 
ters on "Geometrical Vanishes" in my book Mathematics, 
Magic and Mystery, a Dover paperback publication. The 
necktie paradox is fully discussed in Maurice Kraitchik's 
Mathematical Recreations, another Dover book. 
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The closing "proof" that  no numbers a re  uninteresting 
prompted the following telegram from Dave Engle, a t  the 
College of Puget Sound, Tacoma, Washington : 

PER JANUARY SCIENTIFIC AMERICAN SUG- 

GEST THAT JUST SHORT OF INFINITY YOU CEASE 

SNIPPING OFF AND REMOVING DULL NUMBERS. 

AT LEAST SAVE ONE FOR INTEREST'S SAKE! 
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Nim and Tac Tix 

0 NE O F  the oldest and most engaging of all two-person 
mathematical games is known today a s  Nim. Possibly 

Chinese in origin, i t  is sometimes played by children with 
bits of paper, and by adults with pennies on the counter of a 
bar. I n  the most popular version of the game 12 pennies are  
arranged in three horizontal rows as  shown in Figure 86. 

FIG. 86. 
Twelve counters a re  arranged for  a "3, 4, 5" game of Nim. 
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The rules are simple. The players alternate in removing 
one or more coins provided they all come from the same 
horizontal row. Whoever takes the last penny wins. The 
game can also be played in reverse: whoever takes the last 
penny loses. A good gamester soon discovers that in either 
form of the game he can always win if one of his moves 
leaves two rows with more than one penny in a row and the 
same number in each; or if the move leaves one penny in 
one row, two pennies in a second row and three in a third. 
The first player has a certain win if on his first move he 
takes two pennies from the top row and thereafter plays 
"rationally." 

There is nothing startling about the foregoing analysis, 
but around the turn of the century an astonishing discovery 
was made about the game. I t  was found that it could be 
generalized to any number of rows with any number of 
counters in each, and that an absurdly simple strategy, using 
binary numbers, would enable anyone to play a perfect 
game. A full analysis and proof was first published in 1901 
by Charles Leonard Bouton, associate professor of mathe- 
matics a t  Harvard University. I t  was Bouton, incidentally, 
who named the game Nim, presumably after the archaic 
English verb meaning to take away or steal. 

In Bouton's terminology every combination of counters 
in the generalized game is either "safe" or "unsafe." If the 
position left by a player after his move guarantees a win 
for that  player, the position is called safe. Otherwise it is 
unsafe. Thus in the "3, 4, 5" game previously described the 
first player leaves a safe position by taking two pennies 
from the top row. Every unsafe position can be made safe 
by a proper move. Every safe position is made unsafe by 
any move. To play rationally, therefore, a player must move 
so that every unsafe position left to him is changed to a safe 
position. 

To determine whether a position is safe or unsafe, the 
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numbers for each row are 
written in binary notation. If 
each column adds up to zero 
or an even number, then the 
position is safe. Otherwise i t  
is not. 

There is nothing mysterious 
about the binary notation. It 
is merely a way of writing 
numbers by sums of the pow- 
ers of two. The chart of Fig- 
ure 87 shows the binary 
equivalents of the numbers 1 
through 20. You will note 
that each column, as  you move 
from right to left, is headed 
by a successively higher pow- 
er  of two. Thus the binary 
number 10101 tells us to add 
16 to 4 to 1, giving us 21 as  
its equivalent in the decimal 
system, based on the powers 
of 10. To apply the binary 
analysis to the 3, 4, 5 starting 
position of Nim, we first re- 
cord the rows in binary nota- 
tion as  follows: 

F I G .  87.  
Totals 2 1 2 Table of binary numbers fo r  play- 
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The middle column adds up to 1, an odd number, telling us 
that the combination is unsafe. I t  can therefore be made 
safe by the first player. He does so, as explained, by taking 
two pennies from the top row. This changes the top binary 
number to 1, thereby eliminating the odd number from the 
column totals. The reader will discover by trying other first 
moves that  this is the only one which makes the position safe. 

An easy way to analyze any position, provided there are 
no more than 31 counters in one row, is to use the fingers 
of your left hand as a binary computer. Suppose the game 
begins with rows of 7, 13, 24 and 30 counters. You are the 
first player. Is the position safe or unsafe? Extend all five 
fingers of your left hand, palm toward you. The thumb 
registers units in the 16 column; the index finger, those in 
the 8 column; the middle finger, the 4 column; the ring 
finger, the 2 column; the little finger, the 1 column. To feed 
7 to your computer, first bend down the finger representing 
the largest power of 2 that will go into 7. It is 4, so you bend 
your middle finger. Continue adding powers of two, moving 
to the right across your hand, until the total is 7. This is of 
course reached by bending the middle, ring and little fingers. 
The remaining three numbers- 13, 24 and 30- are fed to 
your computer in exactly the same way except that  any bent 
finger involved in a number is raised instead of lowered. 

Regardless of how many rows there are in the game, if 
you finish this procedure with all your fingers raised, then 
the position is safe. This means that  your move is sure to 
make i t  unsafe, and that  you are certain to lose against any 
player who knows as much about Nim as  you do. In  this ex- 
ample, however, you finish with first and second fingers 
bent, telling you that  the position is unsafe, and that  you 
can win if you make a proper move. Because there are many 
more unsafe combinations than safe ones, the odds greatly 
favor the first player when the starting position is deter- 
mined a t  random. 
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Now that you know that 7, 13, 24, 30 is unsafe, how do 
you find a move that will make it safe? This is difficult to 
do on your fingers, so i t  is best to write down the four binary 
numbers as follows : 

Totals 2 3 3 2 2 

Note the column farthest to the left that adds up to an odd 
number. Any row with a unit in this column can be altered 
to make the position safe. Suppose you wish to remove a 
counte'r or counters from the second row. Change the first 
unit to 0, then adjust the remaining figures on the right so 
that  no column will add up to an odd number. The only way 
to do this is to change the second binary number to 1. In 
other words, you remove all counters except one from the 
second row. The other two winning moves would be to take 
four from the third row or 12 from the last row. 

I t  is helpful to remember that you can always win if you 
leave two rows with the same number of counters in each. 
From then on, simply move each time to keep the rows equal. 
This rule, as well a s  the preceding binary analysis, is for the 
normal game in which you win by taking the last counter. 
Happily only a trivial alteration is required to adopt this 
strategy to the reverse game. When the reverse game reaches 
a point (as it must) a t  which only one row has more than 
one counter, you must take either all or all but one counter 
from that row so as to leave an odd number of one-unit 
rows. Thus if the board shows 1, 1, 1, 3, you take all of the 
last row. If i t  shows 1, 1, 1, 1, 8, you take seven from the 
last row. This modification of strategy occurs only on your 
final move, when it is easy to see how to win. 
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Since digital computers operate on the binary system, it 
is not difficult to program such a computer to play a perfect 
game of Nim, or to build a special machine for this purpose. 
Edward U. Condon, the former director of the National 
Bureau of Standards who is now head of the physics de- 
partment a t  Washington University in St. Louis, was a co- 
inventor of the first such machine. Patented in 1940 as  the 
Nimatron, i t  was built by the Westinghouse Electric Cor- 
poration and exhibited in the Westinghouse building a t  the 
New York World's Fair. I t  played 100,000 games and won 
90,000. Most of its defeats were administered by attendants 
demonstrating to skeptical spectators that  the machine could 
be beaten. 

In 1941 a vastly improved Nim-playing machine was de- 
signed by Raymond M. Redheffer, now assistant professor 
of mathematics a t  the University of California a t  Los An- 
geles. Redheffer's machine has the same capacity as  Con- 
don's (four rows with as  many as  seven counters in each), 
but where Nimatron weighed a ton and required costly re- 
lays, Redheffer's machine weighs five pounds and uses only 
four rotary switches. More recently a Nim-playing robot 
called Nimrod was exhibited a t  the Festival of Britain in 
1951 and later a t  the Berlin Trade Fair .  According to an  
account by A. M. Turing (in Chapter 25 of Faster  Than 
Thought, edited by B. V. Bowden, 1953), the machine was 
so popular in Berlin that  visitors "entirely ignored a bar a t  
the f a r  end of the room where free drinks were available, 
and i t  was necessary to call out special police to control the 
crowds. The machine became even more popular after  i t  
had defeated the economics minister, Dr. Erhard,  in three 
games." 

Among many variations of Nim which have been fully 
analyzed, one proposed in 1910 by the American mathemati- 
cian Eliakim H. Moore is of special interest. The rules are 
the same as  they are for regular Nim except that  players 
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are permitted to take from any number of rows not exceed- 
ing a designated number k. Surprisingly, the same binary 
analysis holds, provided a safe position is defined as one in 
which every column of the binary numbers totals a number 
evenly divisible by ( k  + 1). 

Other variations of Nim seem not to have any simpie 
strategy for rational play. To my mind the most exciting of 
these as yet unanalyzed versions was invented about 10 
years ago by Piet Hein of Copenhagen. (Hein is the inventor 
of Hex, a topological game discussed in Chapter 8.) 

In Hein's version, called Tac Tix in English-speaking 
countries and Bulo in Denmark, the counters are arranged 
in square formation as shown in Figure 88. Players alter- 

F I G .  88. 
Piet Hein's game of Tac Tix. 

nately take counters, but they may be removed from any 
horizontal or vertical row. They must always be adjoining 
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counters with no gaps between them. For example, if the 
first player took the two middle counters in the top row, his 
opponent could not take the remaining counters in one move. 

Tac Tix must be played in reverse form (the player who 
takes the last counter loses) because of a simple strategy 
which renders the normal game trivial. On squares with an  
odd number of counters on each side the first player wins 
by taking the center counter and then playing symmetrically 
opposite his opponent. On squares with an  even number of 
counters on each side the second player wins by playing 
symmetrically from the outset. No comparable strategy is 
known for playing the reverse game, although i t  is not diffi- 
cult to show that  on a 3 X 3 board the first player can win 
by taking the center counter or a corner counter, or all of a 
central row or column. 

The clever principle behind Tac Tix, that  of intersecting 
sets of counters, has been applied by Hein to many other 
two- and three-dimensional configurations. The game can be 
played, for example, on triangular and hexagonal boards, 
or by placing the counters on the vertices and intersections 
of a pentagram or hexagram. Intersections of closed curves 
may also be used; here all counters lying on the same curve 
a re  regarded as  being in the same "row." The square form, 
however, combines the simplest configuration with maxi- 
mum strategic complexity. I t  is difficult enough to analyze 
even in the elementary 4 x 4 form, and of course as  the 
squares increase in size the game's complexity rapidly ac- 
celerates. 

A superficial analysis of the game suggests that  sym- 
metry play might insure a win for the second player in a 
4 X 4 game, with only a trivial modification on his last move. 
Unfortunately, there are  many situations in which symme- 
t ry  play will not work. For  example, consider the following 
typical game in which the second player adopts a symmetry 
strategy. 
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FIRST PLAYER SECOND PLAYER 

1 5-6 
2.  1 
3. 4 
4. 3-7 (wins) 

In this example, the second player's initial move is a fatal 
one. After his opponent responds as indicated, the second 
player cannot force a win even if he departs from symmetry 
on all his succeeding moves. 

The game is much more complex than i t  first appears. In  
fact i t  is not yet known whether the first or second player 
can force a win even on a 4 X 4 board from which the four 
corner pieces have been removed. As an  introduction to the 
game, t ry  solving the two Tac Tix problems (devised by Mr. 
Hein) which are pictured in Figure 89. On each board you 
are to find a move that  insures a win. Perhaps some indus- 
trious reader can answer the more difficult question: Who 
has a win on the 4 X 4 board, the first or second player? 

A D D E N D U M  

SEVILLE CHAPMAN, director of the physics division of the 
Cornell Aeronautical Laboratory, Inc., a t  Cornell Univer- 
sity, sent me a wiring diagram for a well-thought-out port- 
able Nim machine which he built in 1957. It weighs 34 
ounces, using three multideck rotary switches to handle 
three rows of four to  ten counters each. By taking the first 
move, the machine can always win. There is a rather pretty 
way to prove this. If we record the three rows in the matrix 
form previously described, i t  is clear that  each row must 
have a "1" in either the 8 or 4 column, but not in both. (The 
two spaces cannot be empty, for then the number of count- 
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FIG.  8 9 .  

Two problems of Tac Tix. 
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ers in the row would be less than four, and they cannot both 
contain a "1" for then the number of counters would be 
more than ten.) There are only two ways that  these three 
"1's" (one for each row) can be arranged in the two col- 
umns : all three in one column, or two in one column and one 
in the other. In both cases one column must total an odd 
number, making the initial position unsafe and thus guar- 
anteeing a win for the machine if i t  plays first. 

The following readers sent detailed analyses of the'4 X 4 
Tac Tix game : Theodore Katsanis, Ralph Hinrichs, William 
Hall and C. D. Coltharp, Paul Darby, D. R. Horner, Alan 
McCoy, P. L. Rotherberg and A. A. Marks, Robert Caswell, 
Ralph Queen, Herman Gerber, Joe Greene, and Richard 
Dudley. No simple strategy was discovered, but there no 
longer is any doubt that  the second player can always win 
on this board as well as on the 4 X 4 field with missing cor- 
ner counters. I t  has been conjectured that  on any square or 
rectangular board with a t  least one odd side, the first player 
can win by taking an entire center row on his first move, 
and that  on fields with even sides the second player has the 
win. These conjectures are, however, not yet established by 
proofs. 

As things now stand, the ideal board for expert Tac- 
Ticians who have mastered the 4 X 4 seems to be the 6 X 6. 
I t  is small enough to keep the game from being long and 
tiresome, yet complex enough to make for an  exciting, un- 
predictable game. 

A N S W E R S  

THE first Tac Tix problem can be won in several different 
ways: for example, take 9-10-11-12 or 4-8-12-16. The second 
problem is won by taking 9 or 10. 



C H A P T E R  S I X T E E N  

Left or Right? 

T HE recent "gay and wonderful discovery" (as Robert 
Oppenheimer called i t )  that  fundamental particles of 

physics have a left-and-right "handedness" opens new con- 
tinents of thought. Do all the fundamental particles in the 
universe have the same handedness? Will nature's ambidex- 
terity someday be restored by the discovery that some gal- 
axies are  composed of antimatter- matter made up of par- 
ticles that  "go the other way," as Alice described the objects 
in her looking glass? Perhaps we can better understand 
these speculations if we approach them in a playful spirit. 

Mirror reflections are so much a part  of daily life that  we 
feel we understand them thoroughly. Most people are  none- 
theless a t  a loss for words when they are asked: "Why does 
a mirror reverse left and right and not up and down?" The 
question is made more confusing by the fact that i t  is easy 
to construct mirrors that do not reverse left and right a t  all. 
Plato in his Timaezts and Lucretius in On the Nature of 
Things describe one such mirror, made by bending a rec- 
tangle of polished metal into the slightly concave form 
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shown in the middle illustration of Figure 90. If you look 
into such a mirror you will see your face as  others see it. 
The reflection of a page of type may similarly be read with- 
out difficulty. 

An even simpler way to make a mirror that  does not re- 
verse images is to place two mirrors, preferably without 
frames, a t  right angles to  each other as  shown in the illus- 
tration a t  right of Figure 90. If you rotate this mirror (as 
well as the one described earlier) through 90 degrees, what 
happens to the image of your face? I t  turns upside down. 

A symmetrical structure is one which remains unchanged 
when i t  is reflected in an ordinary mirror. It can be super- 
posed on its mirror-image, where asymmetric structures 
cannot. The twin forms of all asymmetric objects are  often 
distinguished by calling one "right" and the other "left." 
No amount of inspection or measurement of one will disclose 
a property not possessed by the other, yet the two are quite 
different. This sorely puzzled Immanuel Kant. "What can 
more resemble my hand," he wrote, "and be in all points 
more like, than its image in the looking glass? And yet I 
cannot put such a hand as I see in the glass in the place of 
its original." 

This curious duality is found in structures with any 
number of dimensions, including those with more than three. 
A segment of a straight line, for example, is symmetrical 
along its one dimension; but if we consider a long segment 
followed by a short one, the pattern is asymmetric. Mirrored 
by a point on the linear dimension i t  becomes a short seg- 
ment followed by a long one. If we think of printed words 
as symbols ordered in one dimension, then most words 
are  asymmetric, though there are palindromic words like 
"radar" and "deified" which read the same both ways. 
There are  even palindromic sentences. "Draw pupil's lip 
upward" ; "A man, a plan, a canal- Panama !" ; "Egad ! A 
base tone denotes a bad age"; and Adam's first remark, 
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"Madam, I'm Adam" (to which Eve appropriately replied, 
"Eve"). Poets occasionally make use of palindromic sound 
sequences. A good example is Robert Browning's well-known 
lyric "Meeting a t  Night" in which the rhyme scheme of 
abccba in each stanza was designed to suggest the move- 
ment of sea waves in the poem. 

Melodies may similarly be regarded as tones ordered along 
the single dimension of time. During the 15th century it was 
fashionable to construct palindromic canons in which the 
imitating melody was the other melody backward. Many 
composers (including Haydn, Bach, Beethoven, Hindemith 
and Schonberg) have used the device for contrapuntal ef- 
fects. Most melodies, however, grate on the ear in retro- 
grade form. 

Many amusing experiments in musical reflection can be 
performed with a tape recorder. Piano music played back- 
ward sounds like organ music because each tone begins 
faintly and swells in volume. Particularly weird effects may 
be obtained by playing music backward inside an echo cham- 
ber while recording it on another tape. When the second 

FIG.  90. 
An ordinary mirror and its( 
image ( l e f t )  and two mirrors' 
whose images are not reversed 
(center and right). 
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tape is reversed, the notes regain their original order but 
the echoes precede the sounds. 

Another type of musical reflection is produced by turning 
a player-piano roll around so that it plays forward but with 
high and low notes reversed- the inverted music a pianist 
would produce if he played in the normal manner on a look- 
ing glass piano. The melody becomes unrecognizable, and 
there is an unexpected transposition of minor and major 
keys. This device was also used in Renaissance canons and 
in the counterpoint of later composers. The classic example 
is in Bach's Die Kunst der Fuge, in which the 12th and 13th 
fugues may be inverted. Mozart once wrote a canon with a 
second melody that was the first one both backward and up- 
side down, so that two players could read the same notes 
from opposite sides of the sheet! 

Turning our attention to two-dimensional structures, we 
see that a configuration such as the Christian cross is sym- 
metrical whereas the monad, an ancient Chinese religious 
symbol [see Fig. 911, is not. The dark and light areas, called 
Yin and Yang, symbolize all the fundamental dualities, in- 
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cluding left-right and its combinatorial basis in even and 
odd numbers. The monad's pleasing asymmetry makes sin- 

FIG.  91 .  
The Chinese monad. 

gularly appropriate the fact that i t  was two Chinese physi- 
cists (one of them named Yang!) who received the Nobel 
prize in 1957 for their theoretical work which led to the 
overthrow of parity. Unlike music, all asymmetrical designs 
and pictures can be "flopped" (to use the graphic-arts term 
for "reflected") without losing esthetic value. In fact, Rem- 
brandt once made a flopped etching of his famous Descent 
from the Cross. It has been suggested that left-to-right read- 
ing habits may have a subtle influence on a Westerner's re- 
action to a reflected picture, but if so, the influence seems to 
be slight. 

Because most printed words form asymmetric patterns, 
reflections of printed matter are usually unreadable, but not 
always. If you look a t  a mirror reflection of the words 
"CHOICE QUALITY" on the side of a Carnel-cigarette package, 
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holding the pack so that  its top points to  your right, you 
will be startled by what you see. "QUALITY" is unreadable, 
but "CHOICE" is entirely unchanged ! The reason of course is 
that  "choice," when printed in capital letters, has an  axis of 
symmetry and is therefore superposable on its mirror image 
by turning it upside down. Other words, like "TOMATO" and 
"TIMOTHY," are asymmetric when printed horizontally, but 
acquire an axis of symmetry when printed vertically. 

When we consider familiar structures of three dimen- 
sions, we find that  they are  a pleasing mixture of symmetry 
and asymmetry. Most living forms are symmetrical in their 
outward appearance, with such notable exceptions as spiral 
shells, the pincers of the fiddler crab, the crossed bills of the 
crossbill and the unilateral eyes of flatfish. Even behavior 
patterns are sometimes asymmetric; for example, the coun- 
terclockwise gyrations of bats swarming out of Carlsbad 
Caverns. Most man-made objects are likewise symmetrical, 
though some that  seem to be so prove to  be asymmetric 
when inspected more closely- for instance, scissors, Moe- 
bius strips, hexaflexagons and simple overhand knots. The 
two knots in Figure 92 have identical topological properties, 
yet one cannot be deformed into the other. Dice also have 
two distinct forms. There are two ways of placing spots on 
a die's faces so that  the spots on opposite sides always total 
seven; one way is a mirror image of the other. 

Since folding your arms is the same as tying them in an  
overhand knot, i t  follows that  there are two distinct ways to 
fold arms, though we are all so conditioned to one method 
that  i t  is annoyingly difficult to execute its mirror twin. Fold 
your arms as  you normally do, grasp the two ends of a 
string, unfold your arms, and you will transfer the knot 
from your arms to the string. Repeat the experiment with 
your arms folded the other way and you get a knot that  is a 
reflection of the first one. A fascinating (and unsolved) top- 
ological problem is to prove that  a pair of mirror-image 
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knots in a closed curve cannot be made to cancel each other 
by deforming the curve. No one has succeeded in doing it, 
though it is easy to push one knot into the other and form a 
square knot, which is symmetrical. If you do this with two 
knots of the same handedness, you get an asymmetric granny. 

These are not trivial matters. Now that certain particles 
are known to be asymmetric in some as-yet-unknown spatial 
sense, physical theory will have to account for the fact that 
when a particle meets its antiparticle, the two annihilate 
each other and create symmetrical energy. Alice looked into 
her mirror and wondered if looking-glass milk was good to 
drink. For some time it  has been known that such milk 
would not be digested, because the enzymes of the body, de- 
signed to act on left-handed molecules, could not cope with 
right-handed ones. Now it  would seem that the situation 
might be a good deal worse. The recent parity experiments 
strongly suggest that a particle and its antiparticle are 
really nothing more than mirror-image forms of the same 
structure. If this is true, as most physicists suspect and 
hope, then any attempt by Alice to drink looking-glass milk 
would result in a violent explosion like the explosion of Dr. 
Edward Teller when (as dramatically described by Dr. 
Teller himself in The New Yorker, December 15, 1956) he 
shook hands with Dr. Edward Anti-Teller. It is safe to pre- 
dict that physicists will be speculating right and left for a 
long time to come. 
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F I G .  92.  
Left- and right-handed Moebius strips ( t o p ) ,  overhand knots ( m i d d l e )  
and dice ( b o t t o m ) .  
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A D D E N D U M  

THE QUESTION asked in the second paragraph of this chap- 
ter  prompted the following letter from Dr. Robert D. 
Tschirgi and Dr. John Langdon Taylor, Jr., both of the de- 
partment of physiology, School of Medicine, a t  the Univer- 
sity of California Medical Center in Los Angeles. 

SIRS : 
T h e  entertaining and provocative article o n  s y m m e t r y  by 

Mar t in  Gardner recalled f o r  your readers the  tantalizing 
question: " W h y  does a mirror  reverse l e f t  and r ight  and not  
u p  and dozon?" Despite the  comprehensive descriptions o f  
l ight paths and optical principles which  are usuully mar-  
shaled in anszuer t o  th i s  query,  there  seems t o  be a n  even 
more  fundamental basis, which ,  the  wr i ters  o f  th is  letter 
propose, lies primarily zuithin the  province o f  psychophysi- 
ology. 

H u m a n s  are superficially and grossly bilaterally symmet -  
rical, but  subjectively and behaviorally t h e y  are relatively 
asymmetrical.  T h e  v e r y  fact tha t  zue can dis t inguish our 
r ight  f r o m  our  l e f t  side implies a n  a s y m m e t r y  o f  the  per- 
ceiving sys tem,  as noted b y  E r n s t  Mach in 1900. W e  are 
thus ,  t o  a certain ex ten t ,  a n  asymmetrical  mind  dwelling in 
a bilaterally symmetrical  body, at  least zoith respect t o  casual 
visual inspection o f  our  external f o ~ m .  Here the  t e r m  s y m -  
m e t r y  i s  used in a n  informational  context ,  and indicates 
tha t  the  observer can m a k e  n o  distinction, other t h a n  sense, 
between t w o  or more  elements o f  his perceptive field. Of 
course b y  refining his observations he m a y  gain in format ion  
of other  dissimilarities, a t  z~jhich t i m e  the  s y s t e m  under  con- 
sideration ceases to  be symmetrical.  

W h e n  w e  stand before a mirror ,  zuc see reflected a super- 
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ficially bilaterally symmetr ica l  s tructure ,  and w e  are  misled 
b y  t h i s  apparent  s y m m e t r y  i n t o  treat ing t h e  s y s t e m  a s  if  
ourselves and o u r  reflection w e r e  ident i t ies  r a t h e r  t h a n  en- 
a n t i o m o r p h ~  (ent i t ies  o f  opposite "handedness") .  T h e r e f o r e ,  
bg psychological projection,  zue s e e m  t o  be able t o  rotate  our  
body image  180 degrees in three-dimensional space around 
a vertical a x i s  and t o  translate  i t  a distance equal t o  tw ice  
t h e  distance t o  t h e  m i r r o r ,  thereby  achieving a coincidence 
betzoeen our  body and i t s  reflection.  B y  t h i s  process w e  have  
imagined t h e  identical central -nervous-sys tem perceptive 
mach inery  w h i c h  i s  in ourselves,  r a t h e r  t h a n  i t s  enantio- 
m o r p h ,  t o  ex is t  w i t h i n  our  m i r r o r  image .  W e  are  conse- 
quent ly  led t o  t h e  erroneous s ta temen t  t h a t  zuhen zue m o v e  
our  r igh t  hand ,  our  m i r r o r  i m a g e  m o v e s  i t s  l e f t  hand.  I f  w e ,  
m o r e  correctly,  imag ine  our  enant iomorphic  selves w i t h i n  
our  m i r r o r  i m a g e ,  t h e n  w e  realize t h a t  i t s  definit ion o f  r i g h t  
and l e f t  zcould be reversed,  and zchen zue m o v e  o u r  defined 
r i g h t  hand ,  it m o v e s  i t s  defined r igh t  hand.  W e  m u s t  endozo 
o u r  re f lec t ion n o t  w i t h  our  ozun coordinate s y s t e m ,  bu t  zuith 
a mirror - image  coordinate sys tem.  T h i s  can easily be illus- 
t rated b y  placing a paper bag over  one hand and re-defining 
t h e  m a j o r  body axes  as  "head-feet," "front-back," and 
'(hand-bag" (instead o f  r igh t - l e f t ) .  Nozu stand be fore  a 
m i r r o r  and observe t h a t  w h e n  you m o v e  head,  m i r r o r  i m a g e  
m o v e s  head;  w h e n  yozi m o v e  feet ,  m i r r o r  i m a g e  m o v e s  f e e t ;  
w h e n  you m o v e  hand ,  m i r r o r  i m a g e  m o v e s  hand;  and zuhen 
you m o v e  bag,  m i r r o r  i m a g e  m o v e s  bag. W h a t  has  become 
of r igh t - l e f t  reversal?  I t  has  been dispelled,  a s  t h e  chimera 
i t  zuas, b y  t h e  s imple  procedure of m a k i n g  our  superficial 
s tructure  obviously n o t  bilaterally symmetr ical .  I t  i s  n o  
longer possible t o  produce essential  coincidence be tween  our- 
selves and o u r  m i r r o r  image  b y  180-degree rotat ion around 
our  vertical ax i s ,  ang m o r e  than  around a n v  other  ax i s ,  and 
zue recognize t h e  enant iomorphic  na ture  of our  reflection.  

T o  i l lustrate hotu t h e  convent ion o f  rotat ion about a ver-  
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tical axis imposes the concept of right-left mirror reversal 
on objects other than  ourselves, consider a map  o f  the U .  S .  
oriented in the customary manner of Nor th  headzvard and 
East  t o  the right.  T o  observe the mirror image o f  this  map,  
w e  invariably rotate the map  around i t s  North-South axis 
toward a mirror. This  habit undoubtedly derives f r o m  the 
fact that  most of our movements  designed to inspect our en- 
vironment involve rotation about our vertical axis. For ex- 
ample, i f  the map  were fixed to a zvall opposite a mirror,  we  
would observe the  map  directly and then  rotate ourselves 
about our vertical axis to  view the map's reflection. I n  either 
case, East  will now appear to our left ,  but Nor th  zvill re- 
main  up.  I f ,  however, we  rotate the map  around i t s  East- 
W e s t  axis t o  face the mirror,  or look at the reflection o f  the 
wall map  by  standing on our head, then  East  remains to our 
r ight ,  but Nor th  becomes footward. I t  nozv appears that the 
mirror has reversed top and bottom rather than  right and 
le f t .  

The  only determined coordinate system is  that  which the 
observer imposes on  his environment, and the axes can be 
adjusted so that  the origin occurs at any  point wi th in  the ob- 
server's perceptive space. W h e n  zue describe the  parts o f  a n  
object relative to one another, w e  generally do so by  adjust- 
ing our coordinate system so that  the origin occurs wi th in  
the object, and i t  thereby acquires top-bottom, front-back, 
and right-left  axes corresponding to those o f  the observer. 
A s  objects rotate wi th in  this  system, either through motion 
of the object or motion of the coordinate system (i.e., the 
observer),  certain of the object's coordinate values will 
change sign. Rotation o f  a n  object around i t s  vertical axis 
results in change o f  sign o f  right-left and front-back loci; 
around i t s  right-left  axis results in change o f  sign o f  front-  
back and top-bottom loci; and around i t s  front-back axis re- 
sults in change o f  sign o f  top-bottom and right-left  loci. 
However, since the observer defines the coordinate system, 
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rotation o f  the observer does not  result in change o f  sign o f  
the relative parts o f  the observer. Thus ,  if w e  look a t  our 
own  reflection while standing on our head, w e  still errone- 
ously interpret the mirror as reversing right and l e f t ,  be- 
cause in the process o f  inverting our body, w e  have inverted 
the coordinate system itself .  

A f t e r  th i s  letter appeared i n  Scientific American (May 
1958), t h e  magazine received the  following note f r o m  R. S .  
Wiener  o f  S tamford ,  Connecticut : 

SIRS : 
Af t e r  reading the interesting comments of Drs. Tschirgi 

and Taylor on  the  question " W h y  does a mirror reverse l e f t  
and right and not u p  and down?" I decided to test some o f  
their observations. 

I tacked u p  a map  (actually a chart o f  the Long Island 
Sound, Wes tern  Section) on the wall opposite the mirror 
over m y  dresser. Standing on m y  head on the floor in f ront  
o f  the mirror,  I realized that I could not  see all o f  m y  image. 
All I could see were two feet.  The  one that I recognized to 
be that  which I usually t e r m  the l e f t  one was  covering the 
section of t h e  chart around Bridgeport, while the opposite 
foot was  in the vicinity o f  the East  River. 

I then  tried the experiment w i t h  a paper bag over the 
"left" foot. The  bag was now hovering around Bridgeport. 
The  experiment did not seem to  be accomplishing very much,  
so I moved the dresser out o f  the room, took the mirror o f f  
the  wall and put it on  the floor, leaning i t  against the  wall. 

I again took m y  position on m y  head in f ront  o f  the mir- 
ror. T h e  image o f  the superficially bilaterally symmetric 
structure on i ts  head w i t h  a bag over one foot zoas so fr ight-  
ening that I decided to drop the whole experiment. 
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A LTHOUGH flexagons, as far as anyone knows, are com- 
pletely free of applications (except of course as  play- 

things), mathematicians continue to be intrigued by their 
whimsical properties. In The  Second "Scie?~ti'c A ~ n e r i c a ? ~ "  
Book of Mathematical Puzzles and Diversions I introduced 
their square-shaped cousins, the tetraflexagons. Both types 
have been discussed in many subsequent articles, but no one 
has yet written a definitive work on flexagon theory. Frank 
Bernhart, who teaches mathematics a t  the Rochester Insti- 
tute  of Technology, knows more about flexagons than any- 
one. Some day, let us hope, he will find a publisher for a 
monograph about them. 

Philip Goldstein, a magician who performs mental magic 
under the stage name of Max Maven, thought of a clever way 
to present the magic square trick explained in Chapter 2. A 
spectator is given felt-tip pens of n colors, where n is the or- 



der of the matrix. He draws a horizontal line through each of 
the n rows, using a different color for each row, and per- 
muting the colors any way he likes. He then does the same 
thing for each column. Numbers are summed at  the n spots 
where horizontal and vertical lines of the same color inter- 
sect. The sum is, of course, the predetermined number. 

In the chapter on ticktacktoe I said that the three-dimen- 
sional 4 x 4 x 4 game was unsolved. Oren Patashnik, at  Bell 
Laboratories, cracked the game in 1977 with a computer pro- 
gram almost as complex as the program that proved the four- 
color map conjecture in 1976. Details are given in Patashnik's 
article, cited in the bibliography. Incidentally, the proof in 
Chapter 8 that the first player can always win a game of Hex 
if he plays correctly, also applies to ticktacktoe games. If the 
game can end in a draw, it proves that the first player can 
always force either a draw or a win. For more on ticktacktoe 
and its endless variants, see the last entry in the bibli- 
ography for that chapter, and the many references cited 
therein. 

The birthdate paradox introduced in Chapter 5 has been 
generalized in many ways. I have tried to include the more 
important papers in my bibliography. William Moser's 1984 
article reports the most suprising results. I t  is hard to be- 
lieve, but among as few as fourteen people it is more likely 
than not that two consecutive days will include at least two 
identical birthdates, and with as few as seven persons, seven 
consecutive days will also include, with a probability that ex- 
ceeds one-half, a t  least two identical birthdates. In research- 
ing a paper on puzzles in James Joyce's Ulysses I encoun- 
tered a surprising birthday coincidence involving Joyce and 
his good friend, the Irish writer James Stephens. Joyce se- 
lected Stephens to complete Fir~negans Wake in case he 
(Joyce) died before finishing the book. Both men were born 
on February 2, 1882. 

Hempel's paradox of confirmation theory has become the 
controversial topic of scores of papers by philosophers and 
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statisticians, not to mention vigorous debates in dozens of 
books on scientific method. I have tried to list the most im- 
portant references in the bibliography. 

In his Studies i n  Deductive Logic (1884), the British lo- 
gician and economist William Stanley Jevons poses a problem 
about an Irishman accused of stealing. To counter the evi- 
dence of three witnesses who say they saw him commit the 
crime, he presents thirty witnesses who swear they did not 
see him stealing. "Where exactly lies the error?" Jevons 
asks. This always struck me as similar to Hempel's paradox. 
I s  the testimony of the thirty totally irrelevant? Or does it 
add an infinitesimal amount to the plausibility of the Irish- 
man's claim of innocence? Under some circumstances-for ex- 
ample, if one of the thirty saw the Irishman many miles from 
the scene of the crime a t  the time of the theft-it would 
surely add to his credibility. 

Nitram Rendrag, that great American writer of doggerel, 
has (with apologies to Gelett Burgess) encapsulated Hempel's 
paradox in the following quatrain: 

I never sazv a purple cow, 
But if I ever see one, 

Will the probability crows are black 
Have a better chance to be 1." 

The paradox of the second ace must be stated with ex- 
traordinary care to avoid ambiguity. Both Ball and Lit- 
tlewood (see bibliography), as  well as  others, word the prob- 
lem so vaguely that it can't be answered. Two provisos must 
be met for the paradox to hold. The player who makes the 
statements must be specified in advance, and the name of the 
ace must also be specified. If just any player who holds an 
ace is allowed to say "I have an ace," the probability of his 
holding a second ace is unaffected by naming the ace he has 
in his hand. Even when the player is specified in advance, if 
he is allowed to say, "I have an ace" for any ace, again the 
probability of a second ace is unchanged by his naming the 



ace. Every ace has a name. Naming it under these circum- 
stances is as  irrelevant as  naming the day of the week. If the 
ace is specified in advance, but not the player, the named ace 
is sure to be in somebody's hand. Again, if the player who 
holds i t  now names it, the odds of another ace in his hand re- 
main unaltered. 

In outlining the problem I met both provisos by calling the 
player "you," and specifying that the ace involved is the Ace 
of Spades. Norman Gridgeman, a Canadian statistician, 
called my attention to the fact that no less eminent a phys- 
icist than Erwin Schrodinger, a major architect of quantum 
mechanics, presented the problem in a 1947 paper. Schro- 
dinger said he first heard of the problem in 1938 from J.H.G. 
Whitehead, a British mathematician and nephew of Alfred 
North Whitehead, but according to Littlewood the problem 
goes back to "about 1911." 

Schrodinger met the two provisos as  follows: A hand of 
whist is dealt, but only one player is allowed to pick up his 
hand. He is asked if he has at  least one ace and he truthfully 
replies Yes. He is then asked, "Have you the Ace of 
Spades?" Again he answers Yes. What is the probability that 
he has at  least one other ace? After the first yes, the proba- 
bility is .369+. After the second yes it rises to .561+. How 
can naming the ace raise the probability from a little more 
than one-third to more than one-half? Here is Schrodinger's 
answer: 

I t  would ,  of course,  have n o  sigrlijcance i f  we had 
asked A: what  i s  the sui t  of the ace or  orbe of the aces 
you are holding,  and he had answered: spades. But the 
fact that  among  his  aces zuas the orre we chose to  ask  in -  
creases the likelihood of his holding more  tlla?? axe. I n -  
deed,  the ?nore aces he has ,  the greater the likelihood of 
his answering yes to o u r  second question.  Z f  a bet were 
in tended,  one migh t  call it a rather cu?zving question.  

Gridgeman pointed out in a letter that if the player an- 
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swers the second question by saying "No, the ace of spades 
is not  in my hand," this lowers the probability of two or 
more aces to .262+, or slightly better than one-fourth. 

Observe that all the probabilities cited above refer to the 
probability of a t  least one other ace. As R. A. Epstein 
pointed out in a letter (Scientific Amer ican ,  July 1957), if one 
is concerned with exactly one more ace, the values are 

8,892 -- 
20,825 

21223 = .306+ for - .426+ for the specified ace, and - 
7,249 

the unspecified ace. "Also of interest," wrote Epstein, "are 
the pertinent probabilities if the color of the ace is known. 
For this condition the probability of one or more aces is 
.502+, while the probability of one more ace is .403+. 
Rather oddly, these figures are closer to the specified than to 
the unspecified case." 

In a later letter Gridgeman suggested that the general 
problem could be usefully displayed by a three-dimensional 
Venn diagram: 

You could have,  say ,  a cube of unit volume to  represent 
the total sample  space ( n u m b e r  of possible deals)  wi th ,  
i n s ide ,  four  equal spheres disposed at  the corners of a 
regular tetrahedro~z,  each to  be of such a size a s  to repre- 
sent the probability of a hand wi th  one ace in i t .  W e  la- 
bel t h e m  C ,  D,  H ,  & S .  (Ac tua l l y ,  the d iagram couldn't 
be d r a w n  to scale). N o w  the tetrahedron should be o f  
suclz a size that  the spheres overlap at  the center of each 
edge ( so  that the overlaps would represent the proba- 
bilities of each of the s i x  possible double-ace hands) .  A t  
the center of each face the triple overlap of the spheres 
wil l  represent the probabilities of each of the four  possible 
triple-ace hands .  A n d  at  the dead center o f  the tetra- 
hedron all  four  spheres overlap to represent the proba- 
bility of a hand wi th  all four  aces in i t .  Get the idea? 
The  probabilities of all  k inds  of combinations could then 
be shown.  For  example ,  the answer  to  the question: "I f  a 
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hand is known to contain two aces, what is the proba- 
bility of its containing a third?" Or: "If a hand is known 
to contain two aces, one of which is the ace of spades, 
what is the probability of its also containing the ace of 
hearts?" 

The problem of the second child is also ill-defined unless 
stated with great precision. Rather than discuss it here, let 
me refer the reader to my Second "Scientific American" 
Book of Mathematical Puzzles and Diversions; I repeat the 
problem in Chapter 14, and discuss its ambiguity in Chapter 
19. 

The Tower of Hanoi has been marketed many times 
around the world in many different forms. An unusual ver- 
sion, sold in the United States in 1974, consisted of card- 
board forms to be folded into nine pyramids of nine sizes that 
could be stacked in a nest. The solver was told to hide a 
small treasure (such as a ring or coin) under the lowest 
(smallest) pyramid in the stack, then to obtain the treasure 
by moving the stack to another spot according to the usual 
rules. 

Two-person games have been based on the puzzle. Harry 
Wollerton, in the British monthly Games and Puzzles (De- 
cember 1976), proposed this one: The board is a row of seven 
squares. Each player has, at  one end of the row, a stack of 
five disks in sequential order, largest on the bottom. The 
stacks have different colors. Players alternate moving one of 
their disks, and the object of the game is to be the first to 
get one's stack to the opposite end of the row. A disk may be 
moved to any empty square or on top of any piece (of either 
color) larger than itself. A disk arriving on the target cell 
cannot be moved again, therefore disks must be placed on 
the target square in the correct order. 

Many readers rediscovered an old technique for solving the 
traditional puzzle. If disks at  even positions are one color, 
and those a t  odd positions are another color, the procedure I 
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gave for solving the puzzle become& extremely simple. Disks 
of one color go around the triangle one way, those of the 
other color the opposite way. This procedure, Donald Knuth 
informed me, is given in "Le Tour d' Hano'i," by R. E. Al- 
lardice and A. Y. Fraser, in Proceedings of the Edinburgh 
Mathematical Society 2 (1884): 50-53. 

Vance Revennaugh wrote to suggest an interesting vari- 
ant. Nine disks, three red, three yellow, three blue, are 
stacked with their colors in RYB cyclic order. The task is to 
move the disks, following the standard rules, to form three 
stacks, one red, one yellow, one blue, and to do this in the 
minimum number of moves. 

The Tower of Hanoi obviously generalizes to n disks and k 
pegs, where the task is to transfer the disks in the smallest 
number of moves to any other peg. H. E. Dudeney consid- 
ered the k = 4 case in The Weekly Dispatch (May 25, 1902), 
and the k = 5 case in the same newspaper for March 15, 
1903. He discusses the general case in his answer to the first 
problem of The Cante~bury  Puzzles, where he gives a recur- 
sive procedure for calculating the supposed minimum number 
of moves for any n ,  provided n is a triangular number when 
k = 4, or a pyramidal number when k = 5. For example, for 
four pegs and ten disks (The number 10 is triangular) the re- 
quired number of moves is 49, or considerably less than the 
2'' - 1 = 7,257,600 moves needed if there are only three 
pegs. By adding one more peg, the priests at  Benares could 
transfer their 64 disks in just a few hours! 

The general case was posed as Problem 3918 in American 
Mathematical Monthly in 1939, and two partial solutions 
were given in vol. 48 (1941): 216-19. Since then many mathe- 
maticians have worked on the problem, including Donald 
Knuth, Ashok Chandra, Don Olivier, and Glenn Manacher. 
All arrived a t  the same formula as  Dudeney did. Un- 
fortunately, all proofs of the formula make the following as- 
sumption: Disks that are adjacent on a peg are said to have a 
"gap" if they are not consecutive in size. The assumption is 
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that no disk is moved when there is a gap between smaller 
disks on any other peg. 

No shorter solution has been found for any values of k and 
n that violate this assumption, but the general problem must 
be considered unsolved in spite of many false published 
claims to the contrary. What is required is a proof that no 
solution violating the assumption is shorter. Even the case of 
k = 4 remains unsolved for all but the smallest values of n.  
The formula is complicated, but roughly equivalent to giving 
the minimum number of moves (provided the assumption is 
made) as Zh", where h = k - 2 and mh = n. 

The Tower of Hanoi will be discussed, with solutions to 
some elementary generalizations not previously in print, in 
the forthcoming Concrete Mathematics by Ronald Graham, 
Donald Knuth, and Oren Patashnik. Knuth also will consider 
the puzzle in Chapter 8 of the next volume in his famous se- 
ries of books on The Art of Cornputer Programming. I am 
indebted to Knuth for much of the above information and for 
the following remarks, which are almost verbatim quotations 
from one of his letters. 

The Tower of Hanoi has been modified by adding further 
constraints. For example, a restriction proposed by Scorer, 
Grundy, and Smith in their 1944 paper is to put the pegs in a 
straight line and to disallow moves between the end pegs. 
With this restriction 3" - 1 moves are required to transfer n 
disks from one end peg to the other, and every possible 
configuration of disks on pegs occurs at  some time during the 
process. The sequence of moves corresponds to a ternary 

3" - 1 
Gray code. After - 

2 
moves, the stack is halfway home on 

the middle peg. 
Dozens of other variations have been proposed, including 

one in which the pegs are in a circle and every move must be 
clockwise. Scorer, Grundy, and Smith showed that 3" - 1 
moves suffice in this case as well, when k = 4 and when the 
stack is supposed to move two steps. For example, if there 



are n = 3 disks numbered 0, 1, 2 from smallest to largest, 
their 26-move solution is 00100100 2 00100100 2 00100100. 
But Knuth noticed in 1975 that this isn't optimum: He found 
the 18-move solution 000112 012010 101000. (This incidentally 
must be the best, because there must be at  least 4 more 0's 
than 1's and 4 more 1's than 2's.) 

The cyclic problem, like the unrestricted problem, remains 
unsolved for general n when k >3,  although the complete 
solution is known in the 3-peg case. M. D. Atkinson proved 
in 1981 that for n disks and k = 3 the minimum number of 
clockwise moves required is exactly 

For n = 1 through 7 (k = 3) the minimum number of clock- 
wise moves for transferring n disks to the next adjacent peg 
clockwise are 1, 5, 15, 43, 119, 327, and 895. For clockwise 
transferring to the next adjacent peg counterclockwise, the 
number of moves are 2, 7, 21, 59, 163, 447, and 1223. 

When I wrote the chapter on Hex I did not know that Piet 
Hein is never called Mr. Hein, but always by his full name. 
Many of my later Scientific Amer ican  columns reported on 
his other creations. See The  Second "Scienti$c American" 
Book of Mathematical Puzzles and Diversions and Knotted 
Doughnuts and Other Mathematical Entertai?zwze?zts for 
chapters on Piet Hein's Soma Cube, and Mathematical Car-  
n ival  for a chapter on his superellipse and supereggs. Many 
of his books of delightful light verse, which he calls "grooks," 
have been translated and published in the United States. 

Several topological games have been invented that are like 
Hex in that the winner is the first to complete a specified 
path joining two sides of a board. One of them, sold under 
the name of Bridg-it, turned out to have a winning line of 
play based on a pairing strategy (see Chapter 18 of N e w  
Mathematical Diversions f rom "Scient i jc  American") .  In 
contrast, Hex has proved unusually impervious to analysis. 



To this day, winning lines of play are known only for low-order
boards, with no sign of a general strategy for boards of all
sizes.

Rex, a name for the reverse form of Hex in which the win-
ner forces his opponent to complete a chain, is (like the re-
verse forms of most two-person games) much harder to ana-
lyze. Ronald Evans (see his 1974 paper) has carried the analy-
sis of Rex a step further than Robert Winder did by showing
that on even-order boards White has a win by opening in an
acute-corner cell. This is easily demonstrated on the 2 × 2
board, and it is easy to see the win on the 3 × 3, but the 4 × 4
is so complex that a winning line of play for the first player
remains unknown. David Silverman reported in a letter that
he had found an unusual pairing strategy for a second player
win on the 5 × 5. Readers will find a good 4 × 4 Rex problem
by Evans in my Time Travel and Other Mathematical
Bewilderments.

“Beck’s Hex,” a variant proposed by Anatole Beck, allows
Black to tell White where he must make his first move. Beck
was able to prove (see bibliography) that Black can always win
by telling White to open in an acute-corner cell. Other vari-
ants of Hex, including Vex, Vertical Vex, Reverse Vertical Vex,
and Tex are described in Evans’s 1975 article.

Although it is intuitively apparent that Hex can’t end in a
draw, a formal proof is trickier than you might think. One
“proof,” published several times, goes like this: Imagine a fin-
ished game of Hex played on a paper diamond. Cut out all
the cells on which Black played, then seize the “white” edges
and pull. If the paper comes apart it shows that Black has
completed a path. If it doesn’t come apart White has complet-
ed a path, and the paper is sure to come apart if you pull on
the “black” edges. Because one of the two must occur, a play-
er must win. Unfortunately, it’s not clear from what has been
said that one of the two must occur. To assume that the dia-
mond must pull apart in one direction or the other is to
assume what one is seeking to prove, namely that one side
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must have completed a path. I t  remains to be shown that a 
game cannot end with all cells filled and neither side having 
completed a chain. As David Gale points out in his 1979 pa- 
per, the situation is similar to topology's notorious Jordan 
curve theorem. I t  is easy to "see" that a simple closed curve 
must cut the plane into two separate regions, but a formal 
proof is not so easy to formulate. 

For more about Sam Loyd, readers are referred to the in- 
troductions to the two Dover collections of Loyd puzzles I 
have edited, and to the chapter on advertising premiums in 
my Wheels, Life, and Other Mathematical Amusements. I 
was long under the impression that the collection of puzzles 
in Loyd's Cyclopedia had been selected by Loyd junior after 
his father's death. Not so. In 1907 Loyd senior started Our 
Puzzle Magazine ( I  do not know how many issues appeared), 
which drew upon his earlier output. After his Father's death, 
Sam Loyd I1 simply printed the Cyclopedia from the plates 
of this periodical. Massive as the book is, it fails to include 
hundreds of Loyd puzzles that appeared in various publica- 
tions and as advertising devices. Will Shortz, an editor of 
Games magazine, has for years been tracking down this rich 
mine of neglected material. I hope that he will some day edit 
a definitive collection of Loyd's forgotten creations. 

Loyd's famous "Get-off-the-Earth" premium was based on 
earlier linear versions. For a history of such paradoxes, see 
the two chapters on geometrical vanishes in my Mathe- 
matics, Magic, and  Mystery, and the article by Me1 Stover. 
Both references also cover related vanishing area paradoxes 
such as Paul Curry's triangle, presented here in Chapter 14. 
In recent years the most popular version of a vanishing per- 
son is the disappearing leprechaun paradox, drawn by Pat 
Patterson and available in large and small sizes from the W. 
A. Elliott Company, 2121 Adelaide Street West, Toronto, 
Canada. I reproduce and discuss it in the chapter on adver- 
tising premiums in  wheel.^, and in Alzu, Gotcfza! 

Loyd's 14-15 puzzle is covered in most of the classic gen- 



era1 works on recreational mathematics: Rouse Ball in En- 
gland, Edouard Lucas in France, W. Ahrens in Germany, 
and many others. In the second volume of his Mathematische 
Unterhaltengen and  Spiele (Leipzig, 1918), Ahrens has an 
extensive treatment of the puzzle and its history. An eight- 
block simplification (3 x 3 matrix) is offered as a problem in 
Chapter 20 of my Sixtlz Book of MntZ~ernaticaL Games from 
"Sc ie?~ t i j c  American." Even simpler versions, such as five 
blocks on a 2 x 3 field, have been the basis of problems in 
many old puzzle books. 

Unit squares provide the simplest kind of sliding-block 
puzzles. Hundreds of more difficult sliding puzzles-pieces 
with rectangular and other shapes, and fields other than 
square or rectangular-have been marketed from time to 
time around the globe. Chapter 7 of my Sixth Book intro- 
duces this large field of mechanical puzzles. The definitive 
book about them, with numerous color photographs, is by 
L. E. Horclern (see bibliography, The Fifteen Puzz le) .  

So many articles have appeared about polyominoes, poly- 
cubes (joined cubes), polyhexes (joined hexagons), and tet- 
rominoes (joined right-angle isosceles triangles) that I have 
made no attempt to cover this literature in my bibliography. 
Readers are referred to the references cited in chapters 
about polyominoes in my later book collections of columns, 
and to issues of the Jour?zal of Recreational Mathe?natics in 
which dozens of articles and problems involving polyominoes 
have been published. Sets of polyominoes and their cousins 
appear on the market from time to time in various countries. 
A handsome wooden set of solid pentominoes (the twelve 
pentominoes with unit thickness) is currently available from 
Kadon Enterprises, 1227 Lorene Drive, Pasadena, MD 21122. 
They can be used both for problems on the plane and in 
three dimensions. 

Nim belongs to a large class of what are called nim-like or 
takeaway games in which two players alternately remove 
counters from a specified set,  according to specified rules. In 



standard play the person taking the last counter wins. In re- 
verse play the last to  take a counter loses. The classic pio- 
neering paper on such games is "The G-Values of Various 
Games," by Richard Guy and C.A.B. Smith in Proceedings of 
the Cambridge Philosophical Society 52 (July 1956): 514-26. 
The most extensive coverage of nim-like games-scores of 
new and novel games are analyzed-is the two-volume W i n -  
n ing  W a y s  by Elwyn Berlekamp, John Conway, and Richard 
Guy. Many of my later columns in Scientific Amer ican  intro- 
duced nim-like games, but I have limited my references to 
traditional nim. 

Piet Hein's variant-I called it Tac Tix but it later came to 
be known as Nimbi-has been examined by a number of com- 
puter programs without any general strategy emerging. The 
game need not, of course, be played with square patterns. 
They can be rectangular, triangular, hexagonal, or any other 
shape. In Denmark, in 1967, Piet Hein marketed a version 
played with an initial pattern of twelve counters in the form 
of an equilateral triangle from which the three corner count- 
ers  have been removed. Aviezri Fraenkel and Hans Herda 
were able to prove that the second player can force a win in 
both standard and reverse play. They reported these results 
in "Never Rush to Be First in Playing Nimbi," Mathematics 
Magazine  53 (January 1980): 21-26. 

Left-right asymmetry has always fascinated me; indeed, I 
wrote an entire book about it ,  The Ambidextrous  Universe .  
I t  has gone through many revisions, the most extensive for a 
1985 French edition, but is currently out of print in the 
United States. I am resisting a new revision until things set- 
tle down a bit in theoretical particle physics so I can add a 
section on the role of left and right in the new superstring 
theories of Everything. 
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Paradoxes and paperfolding, Moebius 
variations and mnemonics, fallacies, 
magic squares, topological curiosities, 
parlor tricks, and games ancient and 
modern from Polyominoes, Nim, Hex, 
and the Tower of Hanoi to four-dimen- 
sional ticktacktoe. These mathematical 
recreations, clearly and cleverly pre- 
sented by Martin Gardner, delight and 
perplex while demonstrating principles 
of logic, probability, geometry, and 
other fields of mathematics. 

7 8  $ &*I p 

a""":;;I"i" 
iIc:~::;-a.J-his book was the very first collec- 
4:s s '16 

t16n of ~ardner's enormously popular . .  . 

ScientificAmerican columns, and its 
puzzles remain fresh and fascinating. 
Gardner has added a new afterword 
noting variations on games, mathe- 
matical proofs, and other develop- 
ments and discoveries made since the 
book's first publication. An extensive, 
updated bibliography suggests further 
reading. 

"Martin Gardner has turned a trick 
as neat as any in the book itself. He has 
selected a group of diversions that 
are not only entertaining but mathe- 
matically meaningful as well. . . . The 
book opens with a discussion of 'hexa- 
flexagons'-an ingenious and baffling 
business of paper-folding-the com- 
plete mathematical theory of which 
was formulated by Richard F? Feynman 

and John W. Tukey. A discussion of 
ticktacktoe draws upon the work of 
Charles Babbage; the chapter on pro 
ability paradoxes rests its case with 
some arguments from Carl Hempel. 
An absorbing and utterly simple game 
called Hex (described by Gardner with 
loving attention) was invented by Piet 
Hein of Denmark while contemplating 
the four-colortheorem. . . . Such 
names would be impressive in any con- gigi 
text. What makes them all the more 
astonishing here is that they appear in a jjh$/ 
book which is accessible to almost any *Y - m 8 & s ar*w * ;at44 
alert high school s o p h o m o r e . l ' ~ ~ ~ @ ~ ~ ~ ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~  

##2b%74spla~3ff9:4 
-Miriam Hecht, Scripta Mathemat~ca 
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