Fall 2013-Exam 4: §8\&11-11/14/13-Write all responses on separate paper. Show your work for credit.

1. Convert the rectangular equation to polar coordinates and solve for r.
(a) $x^{2}+(y-4)^{2}=16$

Solution: Expanding, we have $x^{2}+y^{2}-8 y=0 \Leftrightarrow r^{2}=r \sin \theta \Leftrightarrow r=8 \sin \theta$
(b) $\left(x^{2}+y^{2}+y\right)^{2}=4\left(x^{2}+y^{2}\right)$
$\left(r^{2}+y\right)^{2}=4 r^{2} \Leftrightarrow r^{4}+2 y r^{2}+y^{2}-4 r^{2}=0$ Substituting $y=r \sin \theta$ and collecting like terms,
$r^{4}+2 \sin \theta r^{3}+\left(\sin ^{2} \theta-4\right) r^{2}=0$. Now divide through by r^{2} (assuming it's not zero) and setting
up to complete the square:
$r^{2}+2 \sin \theta r=4 \Leftrightarrow(r+\sin \theta)^{2}=4$ so $r=-\sin \theta \pm 2$
Here's a graph of this (note that the origin is also part of the graph since $r=0$ is a solution to the equation:

2. Convert the polar equation to rectangular coordinates and solve for y.
(a) $r=\frac{1}{\sin \theta+\cos \theta}$.

Solution: Multiply both sides by the denominator and you get $r \sin \theta+r \cos \theta=1 \Leftrightarrow y=1-x$
(b) $r=\sec \theta(\tan \theta-1)$

Solution: Multiply both sides by $\cos \theta$ to get $r \cos \theta=\tan \theta-1$ then substitute from the Rosetta stone to get $x=\frac{y}{x}-1 \Leftrightarrow y=x^{2}+x$
3. Consider the polar function $r=\frac{2}{1-\sin \theta}$
(a) Test the function for symmetry. What do you find?
$f(\pi-\theta)=f(\theta)$ so there is y-axis symmetry.
(b) Write the function as a conic section in standard rectangular form. Multiply both sides by the denominator, solve for r and equate squares to get $r^{2}=(y+2)^{2} \Leftrightarrow x^{2}+y^{2}=y^{2}+4 y+4 \Leftrightarrow$ $4(y+1)=x^{2}$, a parabola opening upwards from a vertex at $(0,-1)$, with focus at $(0,0)$, directrix along $y=-2$ and with a focal diameter of 4 .
(c) Complete the table below for r, x, and y for the given θ

θ	0	$\frac{\pi}{6}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{3 \pi}{2}$	$\frac{11 \pi}{6}$
r	2	4	4	2	$\frac{4}{3}$	1	$\frac{4}{3}$
x	2	$2 \sqrt{3}$	$-2 \sqrt{3}$	-2	$-\frac{2 \sqrt{3}}{3}$	0	$\frac{2 \sqrt{3}}{3}$
y	0	2	2	0	$-\frac{2}{3}$	-1	$-\frac{2}{3}$

(d) construct a graph for the function.

4. Find all solutions to each equation, including the complex solutions. Hint: first convert the number to polar form and use DeMovire's theorem.
(a) $x^{5}=-1$

Solution: $x^{5}=\cos (2 k+1) \pi+i \sin (2 k+1) \pi \Leftrightarrow x=\cos \left(\frac{(2 k+1) \pi}{5}\right)+i \sin \left(\frac{(2 k+1) \pi}{5}\right)$ for $k=0,1,2,3,4$. Since these expressions are solvable by radicals (see your class notes) we can write these as
$z_{0}=\frac{1+\sqrt{5}}{4}+i \frac{\sqrt{2(5-\sqrt{5})}}{4}$,
$z_{1}=\frac{1-\sqrt{5}}{4}+i \frac{\sqrt{2(5+\sqrt{5})}}{4}$,
$z_{2}=-1$,
$z_{3}=\frac{1-\sqrt{5}}{4}-i \frac{\sqrt{2(5+\sqrt{5})}}{4}$,
$z_{4}=\frac{1+\sqrt{5}}{4}-i \frac{\sqrt{2(5-\sqrt{5})}}{4}$

(b) $x^{6}=8+15 i$

Solution: Let $\theta_{0}=\arctan \left(\frac{15}{8}\right)$. Then $x^{6}=17\left(\cos \left(\theta_{0}+2 \pi k\right)+i \sin \left(\theta_{0}+2 \pi k\right)\right)$
$\Leftrightarrow x=\sqrt[6]{17}\left(\cos \left(\frac{\theta_{0}+2 \pi k}{6}\right)+i \sin \left(\frac{\theta_{0}+2 \pi k}{6}\right)\right)$ for $k=0,1,2,3,4,5$. I don't think there's any particular insight to be gained by simplifying further.
5. Consider the ellipse described by $\frac{(x-4)^{2}}{25}+\frac{y^{2}}{9}=1$
(a) Find the center, x-intercepts, y-intercepts and the coordinates of the foci.

Solution: The center is $(4,0)$ and since $a=5$ and $b=3, c=\sqrt{25-9}=4$. Thus the x intercepts are $(-1,0)$ and $(9,0)$. The y-intercepts can be found by setting $x=0$ and solving for $y= \pm 3 \sqrt{1-\frac{16}{25}}= \pm \frac{9}{5}$. Finally, the foci are at $(0,0)$ and $(8,0)$.
(b) Sketch a graph showing these features.

Solution: It's easier for a graphing device to graph the parametric form, so I'll convert first:

$$
\left\{\begin{array}{c}
x(t)=4+5 \cos (t) \\
y(t)=3 \sin (t)
\end{array}\right.
$$

(c) What is the eccentricity, $e=\frac{c}{a}$?

$$
e=\frac{c}{a}=\frac{4}{5}
$$

(d) What is the polar form? Hint: it's in the $r=\frac{e d}{1-e \cos \theta}$ form

Solution: Substituting $c=\frac{4}{5}$ and multiplying by $\frac{5}{5}$ we have $r=\frac{4 d}{5-4 \cos \theta}$ Now $f(0)=4 d$ and $f(\pi)=\frac{4 d}{9}$ need to match up with the x-intercepts, $(9,0)$ and $(-1,0)$, which the will if we set $d=\frac{9}{4}$. Thus $r=\frac{9}{5-4 \cos \theta}$
6. Consider the hyperbola describe described by $r=\frac{10}{2-3 \sin \theta}$
(a) Find the eccentricity.

Solution: $e=\frac{3}{2}$.
(b) Complete the table:

θ	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\arcsin \left(-\frac{12}{13}\right)$	$\pi-\arcsin \left(-\frac{12}{13}\right)$
r	5	-10	5	2	$\frac{65}{31}$	$-\frac{65}{31}$
x	5	0	-5	0	$\frac{25}{31}$	$-\frac{25}{31}$
y	0	-10	0	-2	$-\frac{60}{31}$	$\frac{60}{31}$

(c) Given that the vertices of the hyperbola are the y-intercepts what are the coordinates of the center?

Solution: Halfway between the vertices at $(0,-2)$ and $(0,-10)$ is the center at $(0,-6)$
(d) (4 points) Sketch a graph (see attached graph paper).

(e) (4 points) What is the rectangular form?

Solution: Inspecting the graph, we see that $a=4, c=6$ so that $b^{2}=36-16=20$, whence $\frac{(y+6)^{2}}{16}-\frac{x^{2}}{20}=1$ is the rectangular form.
7. Find parametric equations for each given conic.
(a) $\frac{x^{2}}{4}+\frac{(y-1)^{2}}{9}=1$

$$
\begin{aligned}
& x=2 \cos (t) \\
& y=1+3 \sin (t)
\end{aligned}
$$

(b) $(x-1)^{2}-y^{2}=1$

$$
\begin{aligned}
& x=1+\sec (t) \\
& y=\tan (t)
\end{aligned}
$$

(c) $4(y-1)=(x-2)^{2}$

$$
\begin{aligned}
& x=2+2 t \\
& y=1+t^{2}
\end{aligned}
$$

8. Make a table of values and sketch a graph for the given parametric equations.

$$
\begin{align*}
x & =\cos (t) \tag{1}\\
y & =\sin ^{2}(t) \tag{2}
\end{align*}
$$

t	0	$\pm \frac{\pi}{6}$	$\pm \frac{\pi}{4}$	$\pm \frac{\pi}{3}$	$\pm \frac{\pi}{2}$	$\pm \frac{2 \pi}{3}$	$\pm \frac{2 \pi}{4}$	$\pm \frac{5 \pi}{6}$	$\pm \pi$
x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	-1
y	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0

ter: $y=1-x^{2}$ but that the graph oscillates only on the part of the parabola where $y \geq 0$

