- 1. Convert the rectangular equation to polar coordinates and solve for r.
 - (a) $x^2 + (y-4)^2 = 16$

(b)
$$(x^2 + y^2 + y)^2 = 4(x^2 + y^2)$$

2. Convert the polar equation to rectangular coordinates and solve for y.

(a)
$$r = \frac{1}{\sin \theta + \cos \theta}$$

(b) $r = \sec \theta (\tan \theta - 1)$

3. Consider the polar function $r = \frac{2}{1 - \sin \theta}$

- (a) Test the function for symmetry. What do you find?
- (b) Write the function as a conic section in standard rectangular form.
- (c) Complete the table below for r, x, and y for the given θ

θ	0	$\frac{\pi}{6}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{3\pi}{2}$	$\frac{11\pi}{6}$
r							
x							
y							

(d) construct a graph for the function.

4. Find all solutions to each equation, including the complex solutions. *Hint: first convert the number to polar form and use DeMovire's theorem.*

(a)
$$x^5 = -1$$

(b) $x^6 = 8 + 15i$

- 5. Consider the ellipse described by $\frac{(x-4)^2}{25} + \frac{y^2}{9} = 1$
 - (a) Find the center, x-intercepts, y-intercepts and the coordinates of the foci.
 - (b) Sketch a graph showing these features.
 - (c) What is the eccentricity, $e = \frac{c}{a}$?

(d) What is the polar form? *Hint: it's in the* $r = \frac{ed}{1 - e \cos \theta}$ form

6. Consider the hyperbola describe described by $r = \frac{10}{2 - 3\sin\theta}$

- (a) Find the eccentricity.
- (b) Complete the table:

/		1					
	θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	$\arcsin\left(-\frac{12}{13}\right)$	$\pi - \arcsin\left(-\frac{12}{13}\right)$
	r						
	x						
	y						

- (c) Given that the vertices of the hyperbola are the *y*-intercepts what are the coordinates of the center?
- (d) (4 points) Sketch a graph (see attached graph paper).
- (e) (4 points) What is the rectangular form?
- 7. Find parametric equations for each given conic.
 - (a) $\frac{x^2}{4} + \frac{(y-1)^2}{9} = 1$ (b) $(x-1)^2 - y^2 = 1$
 - (c) $4(y-1) = (x-2)^2$
- 8. Make a table of values and sketch a graph for the given parametric equations.

$$x = \cos(t) \tag{1}$$

$$y = \sin^2(t) \tag{2}$$

