Math 12
Name (Print):
Exam 3: Chapter 7-10/24/13

Write all responses on separate paper. Remember to organize your work clearly. You may not use your books, notes, or any calculator on this exam.

1. (10 points) Use the substitution $x=\frac{3}{5} \tan \theta$ to simply the expression $\frac{1}{x^{2} \sqrt{25 x^{2}+9}}$
2. (10 points) Simplify the expression as much as possible: $\frac{\sin \phi}{1-\cos \phi}+\frac{1-\cos \phi}{\sin \phi}$
3. (10 points) Find coefficients C and ϕ so that $2 \sin (4 \theta)+3 \cos (4 \theta)=C \sin (4 \theta+\arctan \phi)$.
4. (15 points) Given that $\tan (\theta)=-3$ and θ is in quadrant II, find the following:
(a) $\cos (2 \theta)$.
(b) $\sin (2 \theta)$
(c) $\tan (2 \theta)$
5. (10 points) Find the area of a regular polygon with twelves sides (a dodecagon) inscribed in the unit circle (radius $=1$) as shown below. Do not approximate.
6. (10 points) Use the addition identities to prove the product to sum identity,
$\sin \alpha \sin \beta=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta))$
7. (10 points) Consider the point $\left(\cos \left(\frac{7 \pi}{12}\right), \sin \left(\frac{7 \pi}{12}\right)\right)$ on the unit circle.
(a) Use the addition identity on $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$ to find simplified radical forms for the coordinates.
(b) Use the half angle formula on $\theta=\frac{7 \pi}{6}$ to find different simplified radical forms for the co-
 ordinates.
8. (9 points) Use the addition identities to express $\cos (5 x)$ as quintic polynomial in $\cos (x)$.
9. (16 points) Find all solutions in the interval $[0,2 \pi)$ for each equation.
(a) $2 \cos (4 \theta)+\sqrt{2}=0$
(b) $\cos ^{2}(2 \theta)-\cos (2 \theta)-1=0$
