Math 12 Fall 2016 - Exam 4: §8\&11 solutions - 12/6/16-

1. Convert the rectangular equation to polar coordinates and solve for r.
(a) $(x+2)^{2}+y^{2}=4$

ANS: $(x+2)^{2}+y^{2}=4 \Leftrightarrow x^{2}+4 x+4+y^{2}=4 \Leftrightarrow x^{2}+y^{2}+4 x=0 \Leftrightarrow r^{2}+4 r \cos \theta=0 \Leftarrow$ $r=-4 \cos \theta$
(b) $(x-1)^{2}-y^{2}=1$ hint: use the identity $\cos ^{2} \theta-\sin ^{2} \theta=\cos (2 \theta)$

ANS: $(x-1)^{2}-y^{2}=1 \Leftrightarrow x^{2}-2 x+1-y^{2}=1 \Leftrightarrow r^{2} \cos ^{2} \theta-2 r \cos \theta-r^{2} \sin ^{2} \theta=0 \Leftrightarrow r^{2}\left(\cos ^{2} \theta-\right.$ $\left.\sin ^{2} \theta\right)-2 r \cos \theta=0 \Leftrightarrow r^{2} \cos (2 \theta)-2 r \cos \theta=0 \Leftarrow r=\frac{2 \cos \theta}{\cos (2 \theta)}$
2. Convert the polar equation to rectangular coordinates and solve for y.
(a) $r=2 \cos \theta(1+\tan \theta)$

ANS: $r=2 \cos \theta(1+\tan \theta) \Leftrightarrow r=2 \cos \theta+2 \sin \theta \Rightarrow r^{2}=2(r \cos \theta+r \sin \theta) \Leftrightarrow x^{2}+y^{2}=2(x+y) \Leftrightarrow$ $x^{2}-2 x+y^{2}-2 y=0 \Leftrightarrow(x-1)^{2}+(y-1)^{2}=2 \Leftrightarrow y=1 \pm \sqrt{2-(x-1)^{2}}$
(b) $r=\frac{1}{\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right)}$ hint: use the addition identity to expand the denominator.

ANS: $r=\frac{1}{\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right)}=\frac{1}{\sin \theta+\cos \theta} \Leftrightarrow r \cos \theta+r \sin \theta=1 \Leftrightarrow x+y=1 \Leftrightarrow y=1-x$
3. Consider the polar function $r=1+2 \cos \theta$
(a) Test the function for symmetry. What do you find?

ANS: Since $\cos (-\theta)=\cos \theta$, this curve has x-axis symmetry.
(b) Complete the table below for r, x, and y for the given θ

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
r	3	$1+\sqrt{3}$	$1+\sqrt{2}$	2	1	0	$1-\sqrt{2}$	$1-\sqrt{3}$	-1
x	3	$\frac{3+\sqrt{3}}{2}$	$\frac{2+\sqrt{2}}{2}$	1	0	0	$\frac{2-\sqrt{2}}{2}$	$\frac{3-\sqrt{3}}{2}$	1
y	0	$\frac{1+\sqrt{3}}{2}$	$\frac{2+\sqrt{2}}{2}$	$\sqrt{3}$	1	0	$\frac{-2+\sqrt{2}}{2}$	$\frac{1-\sqrt{3}}{2}$	0

(c) Construct a complete graph for the function.

Using the symmetry, we can draw the curve through the tabulated points and then reflect those across the x-axis to get the complete graph.
(d) What kind of curve is this?

ANS: A limaçon with an inner loop.

4. Let $z=-\frac{1}{2}+\frac{\sqrt{3}}{2} \mathbf{i}$
(a) Plot z in the complex plane.

(b) Write z in polar form.

$$
z=\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)
$$

(c) Find z^{n} for $n=2,3$

$$
\begin{aligned}
& z^{2}=\cos \left(\frac{4 \pi}{3}\right)+i \sin \left(\frac{4 \pi}{3}\right)=-\frac{1}{2}-\frac{\sqrt{3}}{2} \mathbf{i} \\
& z^{3}=\cos (2 \pi)+i \sin (2 \pi)=1
\end{aligned}
$$

5. Find the 5 fifth roots of the imaginary unit, \mathbf{i} and plot these in the complex plane.

ANS: $i=\cos \left(\frac{\pi}{2}+2 k \pi\right)+i \sin \left(\frac{\pi}{2}+2 k \pi\right)$ so $i^{1 / 5}=\left(\cos \left(\frac{(1+4 k) \pi}{2}\right)+i \sin \left(\frac{(1+4 k) \pi}{2}\right)\right)^{1 / 5}$ for
$k=0,1, \ldots, 4$

k	0	1	2	3	4
z	$\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}$	$\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$	$\cos \frac{9 \pi}{10}+i \sin \frac{9 \pi}{10}$	$\cos \frac{13 \pi}{10}+i \sin \frac{13 \pi}{10}$	$\cos \frac{17 \pi}{10}+i \sin \frac{17 \pi}{10}$

6. Consider the hyperbola described described by $r=\frac{6}{1+2 \cos \theta}$
(a) Find the eccentricity.

ANS: Since the equation is in the standard form, $r=\frac{e d}{1+e \cos \theta}$, we can just read off the value, $e=2$.
(b) Complete the table:

θ	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$
r	2	6	-6	6	3	NAN
x	2	0	6	0	$3 / 2$	NAN
y	0	6	0	-6	$3 \sqrt{3} / 2$	NAN

(c) Given that the vertices of the hyperbola are the x-intercepts what are the coordinates of the center? ANS: The center is the midpoint of segments between the vertices at $(2,0)$ and $(6,0)$; that is, the center is at $(4,0)$
(d) (4 points) Sketch a graph (see attached graph paper).

(e) (4 points) What is the rectangular form?

Since the distance from the center to the focus is $c=4$ and the distance from the center to a vertex is $a=2$, we have $b=\sqrt{16-4}=2 \sqrt{3} \approx 3.4$. The rectangular equation is then $\frac{(x-4)^{2}}{16}-\frac{y^{2}}{12}=1$
7. Use the Pythagorean identity to find parametric equations for each given conic.
(a) $x^{2}+\frac{(y-3)^{2}}{4}=1$

ANS: There are many parameterizations, but perhaps the simplest is

$$
x=\cos (t) \text { and } y=3+2 \sin (t)
$$

(b) $(y-2)^{2}-x^{2}=1$

ANS: $y=2+\sec (t)$ and $x=\tan (t)$

