Math 12 Fall 2016 - Exam 4: §8&11 solutions - 12/6/16 -

- 1. Convert the rectangular equation to polar coordinates and solve for r.
 - (a) $(x+2)^2 + y^2 = 4$ ANS: $(x+2)^2 + y^2 = 4 \Leftrightarrow x^2 + 4x + 4 + y^2 = 4 \Leftrightarrow x^2 + y^2 + 4x = 0 \Leftrightarrow r^2 + 4r \cos \theta = 0 \Leftrightarrow r^2 + 4r \cos^2 \theta = 0$
- 2. Convert the polar equation to rectangular coordinates and solve for y.

(a)
$$r = 2\cos\theta(1 + \tan\theta)$$

ANS: $r = 2\cos\theta(1 + \tan\theta) \Leftrightarrow r = 2\cos\theta + 2\sin\theta \Rightarrow r^2 = 2(r\cos\theta + r\sin\theta) \Leftrightarrow x^2 + y^2 = 2(x+y) \Leftrightarrow x^2 - 2x + y^2 - 2y = 0 \Leftrightarrow (x-1)^2 + (y-1)^2 = 2 \Leftrightarrow \boxed{y = 1 \pm \sqrt{2 - (x-1)^2}}$

- (b) $r = \frac{1}{\sqrt{2}\sin(\theta + \frac{\pi}{4})}$ hint: use the addition identity to expand the denominator. ANS: $r = \frac{1}{\sqrt{2}\sin(\theta + \frac{\pi}{4})} = \frac{1}{\sin\theta + \cos\theta} \Leftrightarrow r\cos\theta + r\sin\theta = 1 \Leftrightarrow x + y = 1 \Leftrightarrow \boxed{y = 1 - x}$
- 3. Consider the polar function $r = 1 + 2\cos\theta$
 - (a) Test the function for symmetry. What do you find? ANS: Since $\cos(-\theta) = \cos \theta$, this curve has x-axis symmetry.
 - (b) Complete the table below for r, x, and y for the given θ

	-			,	·	0	0		
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
r	3	$1 + \sqrt{3}$	$1+\sqrt{2}$	2	1	0	$1 - \sqrt{2}$	$1-\sqrt{3}$	-1
x	3	$\frac{3+\sqrt{3}}{2}$	$\frac{2+\sqrt{2}}{2}$	1	0	0	$\frac{2-\sqrt{2}}{2}$	$\frac{3-\sqrt{3}}{2}$	1
y	0	$\frac{1+\sqrt{3}}{2}$	$\frac{2+\sqrt{2}}{2}$	$\sqrt{3}$	1	0	$\frac{-2+\sqrt{2}}{2}$	$\frac{1-\sqrt{3}}{2}$	0

(c) Construct a complete graph for the function. Using the symmetry, we can draw the curve through the tabulated points and then reflect those across the x-axis to get the complete graph.

(d) What kind of curve is this? ANS: A limaçon with an inner loop.

5. Find the 5 fifth roots of the imaginary unit, **i** and plot these in the complex plane.

- 6. Consider the hyperbola described described by $r = \frac{6}{1 + 2\cos\theta}$
 - (a) Find the eccentricity.

ANS: Since the equation is in the standard form, $r = \frac{ed}{1 + e \cos \theta}$, we can just read off the value,

e=2.

(b)	Complete the table:											
	θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$					
	r	2	6	-6	6	3	NAN					
	x	2	0	6	0	3/2	NAN					
	u	0	6	0	-6	$3\sqrt{3}/2$	NAN					

- (c) Given that the vertices of the hyperbola are the x-intercepts what are the coordinates of the center? ANS: The center is the midpoint of segments between the vertices at (2,0) and (6,0); that is, the center is at (4,0)
- (d) (4 points) Sketch a graph (see attached graph paper).

- (e) (4 points) What is the rectangular form? Since the distance from the center to the focus is c = 4 and the distance from the center to a vertex is a = 2, we have $b = \sqrt{16 - 4} = 2\sqrt{3} \approx 3.4$. The rectangular equation is then $\left| \frac{(x-4)^2}{16} - \frac{y^2}{12} = 1 \right|$
- 7. Use the Pythagorean identity to find parametric equations for each given conic.

ANS:
$$y = 2 + \sec(t)$$
 and $x = \tan(t)$