Name (Print):

Math 12

Fall 2016 - Exam 3: Chapter 7 - 11/10/16 - Write all responses on separate paper. Show your work for credit. Do not use an electronic calculator.

- 1. (10 points) Simplify the expression: $\frac{2 + \tan^2(x)}{\sec^2 x}$
- 2. Prove the identity:
 - (a) $(\sin x + \cos x)^2 1 = \sin(2x)$

(b)
$$\frac{\sin\theta}{1-\cos\theta} - \cot\theta = \csc\theta$$

- 3. Prove that $\cos(\alpha + \beta)\cos(\beta) + \sin(\alpha + \beta)\sin(\beta) = \cos \alpha$.
- 4. Find values of C and ϕ so that the given sum is equal to $C \sin(\omega t + \phi)$:
 - (a) $\sqrt{2}\cos(5x) + 2\sin(5x)$
 - (b) $\sqrt{3}\sin(\pi x) + 2\cos(\pi x)$

5. Show that
$$\frac{\sqrt{2} + \sqrt{6}}{2} = \frac{\sqrt{2 + \sqrt{3}}}{2}$$
 by considering that $\sin\left(\frac{5\pi}{12}\right) = \sin\left(\frac{\pi}{6} + \frac{\pi}{4}\right) = \sin\left(\frac{5\pi/6}{2}\right)$

6. Use the addition identity for $\tan(x)$ to write $\tan(3x)$ in terms of only $\tan(x)$. Simplify. Verify that you formula is correct at $x = \frac{\pi}{4}$

7. (a) Prove that
$$\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$
.
(b) Prove that $\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$
(c) Prove that $\frac{\sin x + \sin y}{\cos x + \cos y} = \tan\left(\frac{x+y}{2}\right)$

- 8. Consider the diagram at right which we'll use to prove the addition identity for $\sin(\alpha + \beta)$.
 - (a) Express \overline{AD} in terms of b and α .
 - (b) Express \overline{BD} in terms of a and β .
 - (c) Express \overline{CD} in two ways:
 - in terms of b and α .
 - in terms of a and β .
 - (d) Express the area of $\triangle ABC$ in terms of α, β, a and b.
 - (e) Use the fact that the area of $\triangle ABC$ is the sum of areas of $\triangle CBD$ and $\triangle ACD$ to prove the addition identity.
- 9. Solve the equation.
 - (a) $(2\cos(3\theta) 1)(2\cos(3\theta) + 1) = 1$
 - (b) $\cos(3\theta) \cos(7\theta) = 0$

