\qquad
Fall 2016-Exam 3: Chapter 7-11/10/16-Write all responses on separate paper. Show your work for credit. Do not use an electronic calculator.

1. (10 points) Simplify the expression: $\frac{2+\tan ^{2}(x)}{\sec ^{2} x}$
2. Prove the identity:
(a) $(\sin x+\cos x)^{2}-1=\sin (2 x)$
(b) $\frac{\sin \theta}{1-\cos \theta}-\cot \theta=\csc \theta$
3. Prove that $\cos (\alpha+\beta) \cos (\beta)+\sin (\alpha+\beta) \sin (\beta)=\cos \alpha$.
4. Find values of C and ϕ so that the given sum is equal to $C \sin (\omega t+\phi)$:
(a) $\sqrt{2} \cos (5 x)+2 \sin (5 x)$
(b) $\sqrt{3} \sin (\pi x)+2 \cos (\pi x)$
5. Show that $\frac{\sqrt{2}+\sqrt{6}}{2}=\frac{\sqrt{2+\sqrt{3}}}{2}$ by considering that $\sin \left(\frac{5 \pi}{12}\right)=\sin \left(\frac{\pi}{6}+\frac{\pi}{4}\right)=\sin \left(\frac{5 \pi / 6}{2}\right)$
6. Use the addition identity for $\tan (x)$ to write $\tan (3 x)$ in terms of only $\tan (x)$. Simplify. Verify that you formula is correct at $x=\frac{\pi}{4}$
7. (a) Prove that $\sin (x)+\sin (y)=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$.
(b) Prove that $\cos (x)+\cos (y)=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$.
(c) Prove that $\frac{\sin x+\sin y}{\cos x+\cos y}=\tan \left(\frac{x+y}{2}\right)$
8. Consider the diagram at right which we'll use to prove the addition identity for $\sin (\alpha+\beta)$.
(a) Express $\overline{A D}$ in terms of b and α.
(b) Express $\overline{B D}$ in terms of a and β.
(c) Express $\overline{C D}$ in two ways:

- in terms of b and α.
- in terms of a and β.
(d) Express the area of $\triangle A B C$ in terms of α, β, a and b.
(e) Use the fact that the area of $\triangle A B C$ is the sum of areas of $\triangle C B D$
 and $\triangle A C D$ to prove the addition identity.

9. Solve the equation.
(a) $(2 \cos (3 \theta)-1)(2 \cos (3 \theta)+1)=1$
(b) $\cos (3 \theta)-\cos (7 \theta)=0$
