Fall 2016 - Exam 2 Solutions: Chapter 4 -

1. Solve each equation for x. You won't need a calculator.
(a) $2=\log _{5}\left(x^{2}+3 x-3\right)$ Sol'n: $x^{2}+3 x-3=25 \Leftrightarrow x^{2}+3 x-28=0 \Leftrightarrow(x-4)(x+7)=0 \Leftrightarrow$ $x=4$ or $x=-7$.
(b) $4^{-0.5 x}=\frac{1}{8}$

Sol'n: $\frac{1}{2^{x}}=\frac{1}{8} \Leftrightarrow=3$
2. For each function, (1) find the vertical asymptote(s), (2) find the x and y-intercepts, (3) construct a table of values including two other points and (4) construct a graph showing these features:
(a) $f(t)=\ln (3 t+e)$

Sol'n: Require that $3 t+e>0 \Leftrightarrow t>\frac{-e}{3}$ Thus the vertical asymptote is $x=\frac{-e}{3}$. The intercepts are $(0,1)$ and $\left(\frac{1-e}{3}, 0\right)$

(b) $g(x)=\log _{10}\left(10-x^{2}\right)$

Sol'n: Require that $10-x^{2}>0 \Leftrightarrow x^{2}<10 \Leftrightarrow-\sqrt{10}<x<\sqrt{10}$ Thus the vertical asymptotes are $x=-\sqrt{10}$ and $x=\sqrt{10}$ $f(0)=\log _{10}(10)=1$ and $f(x)=0 \Leftrightarrow 10-x^{2}=1 \Leftrightarrow x= \pm 3$

x	± 3.16	± 3	0
y	$\log _{10}(10-9.9856)=\log _{10}(0.0144) \approx-1.84$	0	1

3. Solve the equation for x in an exact, simplified form, approximate to the nearest ten thousandth.
(a) $2^{10}=100^{x}$

Sol'n: $2^{10}=10^{2 x} \Leftrightarrow 2 x=\log _{10} 2^{10} \Leftrightarrow 2 x=10 \log _{10}(2) \Leftrightarrow x=5 \log _{10}(2) \approx 5 \cdot 0.301029 \approx 1.5051$
(b) $\left(1+\frac{1}{8}\right)^{3}=e^{2 x}$

Sol'n: $2 x=3 \ln \left(\frac{9}{8}\right)=\ln (9)-\ln (8)=2 \ln 3-3 \ln 2 \approx 2(1.09861)+3(0.69315) \approx 0.1767$
4. Use the properties of logarithms to solve each equation
(a) $\log _{5}(3 x-2)+\log _{5}(x-8)=2$ Sol'n: $\log _{5}(3 x-2)+\log _{5}(x-8)=2 \Rightarrow \log _{5}(3 x-2)(x-8)=2 \Leftrightarrow$ $(3 x-2)(x-8)=25 \Leftrightarrow 3 x^{2}-26 x-9=0 \Leftrightarrow(3 x+1)(x-9)=0 \Leftrightarrow x=-\frac{1}{3}$ or $x=9$ (only the latter is a valid solution.)
(b) $\log _{2}\left(x^{2}+1\right)=1+\log _{2}(x+2)$ Sol'n: $\log _{2}\left(\frac{x^{2}+1}{x+2}\right)=1 \Leftrightarrow \frac{x^{2}+1}{x+2}=\Leftrightarrow x^{2}+1=2 x+4 \Leftrightarrow$ $x^{2}-2 x-3=(x-3)(x+1)=0 \Leftrightarrow x=-1$ or $x=3$
5. Suppose that $\$ 1,000$ is invested in a savings account paying 3.2% interest per year..
(a) Write the formula for the amount in the account after t years if interest is compounded monthly.

Sol'n: $A(t)=1000\left(1+\frac{0.032}{12}\right)^{12 t}=1000(1.002 \overline{6})^{12 t} \approx 1000(1.03247353)^{t}$
(b) How much more would the value of the investment increase if it was compounded continuously? $1000 e^{0.032 t}-1000(1.03247353)^{t}$. After a year, $\approx 1032.5175-1032.47353 \approx 0.044$, about 4 cents.
6. The Richter magnitude of an earthquake is defined to be $M=\log \frac{I}{S}$ where I is the intensity of the earthquake and S is the intensity of a "standard" earthquake. An earthquake measuring 9.0 on the Richter scale struck Japan in March 2011, causing extensive damage. How many times more intense was the Japanese earth-quake than a minor earthquake measuring 4.3 on the Richter scale?
Hint: If I_{0} is the intensity of the Japanes earthquake and I_{1} is the intensity of the Salton Sea quake, we want to compute $\frac{I_{0}}{I_{1}}$.
Sol'n: We have $9=\log \frac{I_{0}}{S} \Leftrightarrow I_{0}=S \cdot 10^{9}$ and $4.3=\log \frac{I_{1}}{S} \Leftrightarrow I_{1}=S \cdot 10^{4.3}$ so $\frac{I_{0}}{I_{1}}=\frac{S \cdot 10^{9}}{S \cdot 10^{4.3}}=10^{4.7}=$ $10^{0.7} \times 10^{4} \approx 50000$ times more intense.
7. Postassium-40 $\left({ }^{40} \mathrm{~K}\right)$ is a radioactive isotope of potassium which has a very long half-life of 1.251×10^{9} years. At time $t=0$ a heavy canister contains 3 grams of Potassium- 40 .
(a) Find a function $m(t)=m_{0} 2^{-t / h}$ that models the amount of ${ }^{40} \mathrm{~K}$ left in the canister after t years. Sol'n: $m(t)=3 \cdot 2^{-t /\left(1.251 \cdot 10^{9}\right)} \approx 3 \cdot 2^{-7.994 \cdot 10^{-10} t}$
(b) Find a function $m(t)=m_{0} e^{-r t}$ that models the amount of ${ }^{40} \mathrm{~K}$ remaining after t seconds.

Sol'n: We seek r so that $3 \cdot 2^{-t /\left(1.251 \cdot 10^{9}\right)}=3 \cdot e^{-r t} \Leftrightarrow r=\frac{\ln 2}{1.251 \cdot 10^{9}} \Rightarrow r \approx 5.5407 \times 10^{-10}$ so $m(t) \approx 3 e^{-5.5407 \cdot 10^{-10} t}$ If you want this in seconds(?!) then use the fact that 1 year ≈ 365.2422 days \times $\frac{24 \mathrm{hrs}}{\text { day }} \times \frac{3600 \mathrm{sec}}{\mathrm{hr}}=31556926.08$ seconds and so $m(t) \approx 3 e^{-5.5407 \cdot 10^{-10} / 31556926.08 t} \approx 3 e^{-1.756 \cdot 10^{-17} t}$
(c) How much ${ }^{40} \mathrm{~K}$ remains after 1 billion years?

Sol'n: $m\left(10^{9}\right)=3 \cdot 2^{-1 / 1.251} \approx 1.72$ grams.
(d) After how long will the amount of ${ }^{40} \mathrm{~K}$ be reduced to $1 \mathrm{mg}=10^{-6}$ grams?

Sol'n: Solve $m(t)=3 \cdot 2^{-t /\left(1.251 \cdot 10^{9}\right)}=10^{-6} \Leftrightarrow \frac{-t}{1.251 \cdot 10^{9}}=\log _{2}\left(\frac{10^{-6}}{3}\right)$
$\Leftrightarrow t=-1.251 \cdot 10^{9}\left(-6-\log _{2}(3)\right)=1.251 \cdot 10^{9}\left(6+\frac{\ln 3}{\ln 2} \approx 9.49\right.$ billion years. Don't wait up.

