Math 5 - Fall '16-Test 1
Write all responses on separate paper.
Show work for credit. No calculator/notes.

1. A bowling ball thrown by a bowler follows a parabolic trajectory given by the graph of the equation $h(t)=4-4\left(t-\frac{1}{2}\right)^{2}$, where t is the time since ball was thrown and $h(t)$ is the height of the ball above the ground at time t.
(a) What is the maximum height the bowling ball reaches?

Sol'n: The formula for the parabola is given in vertex form, so you can just read off the coordinates of the maximum: $(h, k)=\left(\frac{1}{2}, 4\right)$ shows that the bowling ball reaches its maximum height of 4 ft . Also, while the question doesn't ask for this, the maximum height of 4 feet happens at time $t=\frac{1}{2}$.
(b) When does the bowling ball hit the ground?

Sol'n: Solve $h(t)=0 \Leftrightarrow 4=4\left(t-\frac{1}{2}\right)^{2}=4 \Leftrightarrow t-\frac{1}{2}= \pm \sqrt{1} \Leftrightarrow t=\frac{1}{2} \pm 1$. Since t must be positive, we take $t=\frac{3}{2}=1.5$ seconds.
2. Consider the polynomial function $f(x)=x^{3}-\frac{5}{2} x^{2}+\frac{1}{2}$
(a) Explain why this function does not satisfy the condition for the theorem on rational zeros. Write a function with the same zeros that does satisfy the condition.
Sol'n: The condition for applying the theorem on rational roots is that the coefficients of the polynomial are integer, but $\frac{5}{2}$ is not an integer; that is, $\frac{5}{2} \notin \mathbb{Z}$.
(b) List all the possible rational zeros of the function.

Sol'n: Observe that the zeros of $2 f(x)=2 x^{3}-5 x^{2}+1$ are the same as the zeros of f so we can apply the theorem on rational roots to $2 f(x)$ to find all possible roots of $f: x \in\left\{1, \frac{1}{2}\right\}$.
(c) Write a complete factorization for the function.

First we need to find a rational zero.

x				$2 y$
0	2	-5	0	1
1	2	-3	-3	-2
$\frac{1}{2}$	2	-4	-2	0
2	2	-1	-2	-3
3	2	1	3	10
-1	2	-7	7	-6

We get a lot of information from the synthetic division table at left. Dividing by $x-1$ produces a remainder of -2 , so we know $2 f(1)=$ -2 and further, since $2 f(0)=1$ is positive, the function changes sign in $(0,1)$ and thus by the Intermediate Value Theorem, it must have a zero in $(0,1)$. So we divide by $x-\frac{1}{2}$ and find that $\frac{1}{2}$ is a zero, so $2 f(x)=(2 x-1)\left(x^{2}-2 x-1\right)$. Zeros of $x^{2}-2 x-1=(x-1)^{2}-2$ are $x=1 \pm \sqrt{2} \approx 2.4$ and -0.4 . So a complete factorization is $f(x)=\frac{1}{2}(2 x-1)(x-1+\sqrt{2})(x-1-\sqrt{2})$.
(d) construct a careful grapl

3. Consider the polynomial function $p(x)=3 x^{4}+10 x^{3}+4 x^{2}-5 x-2$.
(a) What does Descartes' rule of signs say about the number of positive and negative zeros of p ?

Soln: There is exactly one positive zero and 3 or 1 negative zeros.
(b) Use the Remainder Theorem to evaluate $p(-4)$ and find $q(x)$ so that $p(x)=(x+4) q(x)+p(-4)$.

x				y	
0	3	10	4	-5	-2
-4	3	-2	12	-53	210

(c) Find $p(1)$ and explain why there must be a zero in the interval $(0,1)$

Soln: As the synthetic division tableau below shows, $p(0)=-2$ and $p(1)=10$, so, by the Intermediate Value Theorem, there is some $r \in(0,1)$ such that $p(r)=0$.
(d) List all the possible rational zeros of $p(x)$, according the theorem on rational zeros.

Soln: $\pm\left\{1,2, \frac{1}{3}, \frac{2}{3}\right\}$.
(e) Find all the zeros of $p(x)$.

x					y
0	3	10	4	-5	-2
1	3	13	17	12	10
$\frac{1}{3}$	3	11	$\frac{23}{3}$	$-\frac{22}{9}$	$-\frac{76}{27}$
$\frac{2}{3}$	3	12	12	3	0
$\frac{2}{3}$	3	14	$\frac{64}{3}$	$\frac{155}{9}$	
-1	3	9	3	0	

The synthetic division tableau, together with the Remainder Theorem shows that $f(0)=-2$ and $f(1)=10$ so that, by the Intermediate Value Theorem, there is a zero in $(0,1)$.
The rational number, $\frac{1}{3}$ is a contender, but we find that $f\left(\frac{1}{3}\right)=-\frac{76}{27}$, so there is a zero in $\left(\frac{1}{3}, 1\right)$. The rational number $\frac{2}{3}$ is a contender and we find that $f(x)=\left(x-\frac{2}{3}\right)\left(3 x^{3}+\right.$ $\left.12 x^{2}+12 x+3\right)$ and since $\frac{2}{3}$ is an upper bound on the zeros, we look at the negatives where we quickly see that $f(-1)=0$ and so $f(x)=(3 x-2)(x+1)\left(x^{2}+3 x+1\right)$ and the zeros are $\frac{2}{3},-1,-\frac{3}{2}+\frac{\sqrt{5}}{2},-\frac{3}{2}-\frac{\sqrt{5}}{2}$
4. Write a formula for the polynomial function of degree 5 whose graph is shown:
Soln: A root of multiplicity 2 at $x=\frac{5}{2}$ and a root of multiplicity 3 at $x=-1$. There are 5 factors: $p(x)=a(x+1)^{3}(2 x-5)^{2}$. Now we can determine the scaling factor, a, by requiring that $p(0)=12.5 \Leftrightarrow 25 a=$ $12.5 \Leftrightarrow a=\frac{1}{2}$. Thus $p(x)=\frac{1}{2}(x+1)^{3}(2 x-5)^{2}$.

5. Consider the rational function, $r(x)=\frac{x^{3}-2 x^{2}-3 x}{x^{2}-4}$
(a) What are the intercepts?

Soln: $r(x)=\frac{x(x-3)(x+1)}{(x-2)(x+2)}$ so the intercepts are $(-1,0),(0,0)$, and $(3,0)$.
(b) What asymptotes does it have?

Soln: There are vertical asymptotes along $x=-2$ and $x=2$ and since the degree of the numerator is one more thant the degree of the denominator, there's a slant asymptote. To find
that, you need to do long division:

$$
\begin{aligned}
& \left.x^{2}-4\right) \frac{x-2}{x^{3}-2 x^{2}-3 x+0} \\
& \frac{-x^{3} \quad+4 x}{-2 x^{2}+x+0} \\
& \begin{aligned}
2 x^{2} & -8 \\
& x-8
\end{aligned}
\end{aligned}
$$

So $r(x)=x-2+\frac{x-8}{x^{2}-4}$ and when $|x| \gg 0(x$ is far from zero), $y \approx x-2$, the slant asymptote.
(c) Construct a table of values and a graph for the function.

Soln:

x	-4	-3	-2.1	-1.9	-1	0	1	1.9	2.1	3	5
$r(x)$	-7	$-\frac{36}{5}$	≈-30	≈ 21	0	0	$\frac{4}{3}$	≈ 15	≈-15	0	$\frac{20}{7}$

6. Solve the inequality $x \geq \frac{16-x}{2 x+3}$

Soln: $\Leftrightarrow \frac{x(2 x+3)+x-16}{2 x+3} \geq 0 \Leftrightarrow \frac{2 x^{2}+4 x-16}{2 x+3}=\frac{2(x+4)(x-2)}{2 x+3} \geq 0 \Leftrightarrow x \in[-4,-3 / 2) \cup[2, \infty)$
7. Find the domain of the function $f(x)=\frac{1}{\sqrt{2 x^{3}+7 x^{2}+4 x-4}}$

Soln: Domain $=\left\{x \mid 2 x^{3}+7 x^{2}+4 x-4>0\right\}$. To solve the inequality, we need to factor the cubic, so it'd be real nice to have a rational zero, which must be in $\pm\left\{1,2,4, \frac{1}{2}\right\}$. Hunt and peck with synthetic division:

x				y
0	2	7	4	-4
1	2	9	13	9
$\frac{1}{2}$	2	8	8	0

We can factor the cubic!:
$(2 x-1)\left(x^{2}+4 x+4\right)=(2 x-1)(x+2)^{2}>0 \Leftrightarrow$. Since $-2<\frac{1}{2}$, the domain is $x \in\left(\frac{1}{2}, \infty\right)$

