Math 5 - Fall '16 - Test 1 Name (Print): Write all responses on separate paper. Show work for credit. No calculator/notes.

- 1. A bowling ball thrown by a bowler follows a parabolic trajectory given by the graph of the equation $h(t) = 4 4 \left(t \frac{1}{2}\right)^2$, where t is the time since ball was thrown and h(t) is the height of the ball above the ground at time t.
 - (a) What is the maximum height the bowling ball reaches?
 Sol'n: The formula for the parabola is given in vertex form, so you can just read off the coordinates of the maximum: (h, k) = (¹/₂, 4) shows that the bowling ball reaches its maximum height of 4 ft. Also, while the question doesn't ask for this, the maximum height of 4 feet happens at time t = ¹/₂.
 - (b) When does the bowling ball hit the ground? **Sol'n:** Solve $h(t) = 0 \Leftrightarrow 4 = 4 \left(t - \frac{1}{2}\right)^2 = 4 \Leftrightarrow t - \frac{1}{2} = \pm \sqrt{1} \Leftrightarrow t = \frac{1}{2} \pm 1$. Since t must be positive, we take $t = \frac{3}{2} = 1.5$ seconds.
- 2. Consider the polynomial function $f(x) = x^3 \frac{5}{2}x^2 + \frac{1}{2}$
 - (a) Explain why this function does not satisfy the condition for the theorem on rational zeros. Write a function with the same zeros that does satisfy the condition.
 Sol'n: The condition for applying the theorem on rational roots is that the coefficients of the polynomial are integer, but ⁵/₂ is not an integer; that is, ⁵/₂ ∉ Z.
 - (b) List all the possible rational zeros of the function. **Sol'n:** Observe that the zeros of $2f(x) = 2x^3 - 5x^2 + 1$ are the same as the zeros of f so we can apply the theorem on rational roots to 2f(x) to find all possible roots of $f: x \in \{1, \frac{1}{2}\}$.
 - (c) Write a complete factorization for the function. First we need to find a rational zero.

x				2y
0	2	-5	0	1
1	2	-3	-3	-2
$\frac{1}{2}$	2	-4	-2	0
2	2	-1	-2	-3
3	2	1	3	10
-1	2	-7	7	-6

We get a lot of information from the synthetic division table at left. Dividing by x - 1 produces a remainder of -2, so we know 2f(1) = -2 and further, since 2f(0) = 1 is positive, the function changes sign in (0, 1) and thus by the Intermediate Value Theorem, it must have a zero in (0, 1). So we divide by $x - \frac{1}{2}$ and find that $\frac{1}{2}$ is a zero, so $2f(x) = (2x - 1)(x^2 - 2x - 1)$. Zeros of $x^2 - 2x - 1 = (x - 1)^2 - 2$ are $x = 1 \pm \sqrt{2} \approx 2.4$ and -0.4. So a complete factorization is $f(x) = \frac{1}{2}(2x - 1)(x - 1 + \sqrt{2})(x - 1 - \sqrt{2})$.

(d) construct a careful grapl

ī

- 3. Consider the polynomial function $p(x) = 3x^4 + 10x^3 + 4x^2 5x 2$.
 - (a) What does Descartes' rule of signs say about the number of positive and negative zeros of p? Soln: There is exactly one positive zero and 3 or 1 negative zeros.
 - (b) Use the Remainder Theorem to evaluate p(-4) and find q(x) so that p(x) = (x+4)q(x) + p(-4).

- (c) Find p(1) and explain why there must be a zero in the interval (0, 1)Soln: As the synthetic division tableau below shows, p(0) = -2 and p(1) = 10, so, by the Intermediate Value Theorem, there is some $r \in (0, 1)$ such that p(r) = 0.
- (d) List all the possible rational zeros of p(x), according the theorem on rational zeros. Soln: $\pm \{1, 2, \frac{1}{3}, \frac{2}{3}\}$.
- (e) Find all the zeros of p(x).

x					y
0	3	10	4	-5	-2
1	3	13	17	12	10
$\frac{1}{3}$	3	11	$\frac{23}{3}$	$-\frac{22}{9}$	$-\frac{76}{27}$
$\frac{2}{3}$	3	12	12	3	0
$\frac{2}{3}$	3	14	$\frac{64}{3}$	$\frac{155}{9}$	
-1	3	9	3	0	

The synthetic division tableau, together with the Remainder Theorem shows that f(0) = -2 and f(1) = 10 so that, by the Intermediate Value Theorem, there is a zero in (0, 1). The rational number, $\frac{1}{3}$ is a contender, but we find that $f\left(\frac{1}{3}\right) = -\frac{76}{27}$, so there is a zero in $\left(\frac{1}{3},1\right)$. The rational number $\frac{2}{3}$ is a contender and we find that $f(x) = \left(x - \frac{2}{3}\right)\left(3x^3 + 12x^2 + 12x + 3\right)$ and since $\frac{2}{3}$ is an upper bound on the zeros,

 $12x^2 + 12x + 3$) and since $\frac{2}{3}$ is an upper bound on the zeros, we look at the negatives where we quickly see that f(-1) = 0and so $f(x) = (3x - 2)(x + 1)(x^2 + 3x + 1)$ and the zeros are

- $\frac{\frac{2}{3}, -1, -\frac{3}{2} + \frac{\sqrt{5}}{2}, -\frac{3}{2} \frac{\sqrt{5}}{2}}{2}$
- 4. Write a formula for the polynomial function of degree 5 whose graph is shown:

Soln: A root of multiplicity 2 at $x = \frac{5}{2}$ and a root of multiplicity 3 at x = -1. There are 5 factors: $p(x) = a(x + 1)^3(2x - 5)^2$. Now we can determine the scaling factor, a, by requiring that $p(0) = 12.5 \Leftrightarrow 25a =$ $12.5 \Leftrightarrow a = \frac{1}{2}$. Thus $p(x) = \frac{1}{2}(x+1)^3(2x-5)^2$.

5. Consider the rational function,
$$r(x) = \frac{x^3 - 2x^2 - 3x}{x^2 - 4}$$

- (a) What are the intercepts? **Soln:** $r(x) = \frac{x(x-3)(x+1)}{(x-2)(x+2)}$ so the intercepts are (-1,0), (0,0), and (3,0).
- (b) What asymptotes does it have?

Soln: There are vertical asymptotes along x = -2 and x = 2 and since the degree of the numerator is one more thant the degree of the denominator, there's a slant asymptote. To find

that, you need to do long division:

n:

$$\begin{array}{r} x^{2} - 4 \\ \hline x^{3} - 2x^{2} - 3x + 0 \\ - x^{3} + 4x \\ \hline - 2x^{2} + x + 0 \\ 2x^{2} & - 8 \\ \hline x - 8 \end{array}$$

So $r(x) = x - 2 + \frac{x - 8}{x^2 - 4}$ and when |x| >> 0 (x is far from zero), $y \approx x - 2$, the slant asymptote.

(c) Construct a table of values and a graph for the function.

6. Solve the inequality $x \ge \frac{16-x}{2x+3}$ **Soln:** $\Leftrightarrow \frac{x(2x+3)+x-16}{2x+3} \ge 0 \Leftrightarrow \frac{2x^2+4x-16}{2x+3} = \frac{2(x+4)(x-2)}{2x+3} \ge 0 \Leftrightarrow x \in [-4, -3/2) \cup [2, \infty)$

7. Find the domain of the function $f(x) = \frac{1}{\sqrt{2x^3 + 7x^2 + 4x - 4}}$ **Soln:** Domain= $\{x|2x^3 + 7x^2 + 4x - 4 > 0\}$. To solve the inequality, we need to factor the cubic, so it'd be real nice to have a rational zero, which must be in $\pm\{1, 2, 4, \frac{1}{2}\}$. Hunt and peck with synthetic with division:

x				y	We say footanthe subjet
0	2	7	4	-4	We can factor the cubic: $(2x-1)(x^2+4x+4) = (2x-1)(x+2)^2 > 0 \Leftrightarrow$. Since $-2 < \frac{1}{2}$.
1	2	9	13	9	the domain is $x \in (\frac{1}{2}, \infty)$
$\frac{1}{2}$	2	8	8	0	