Write your responses on the pages provided or attach additional pages, as needed. No notes are allowed. A scientific calculator is allowed, but not a graphing calculator. You can specify here which one (1) problem you'd prefer to exclude:

1. Find all zeros for each polynomial function.

(a)
$$f(x) = 2x^3 + x^2 - 3x + 1$$
.

(b)
$$p(x) = x^5 - 3x^3 + x = x(x^2 + x - 1)(x^2 - x - 1)$$
.

2. We seek a formula for the polynomial function with integer coefficients whose graph is shown.

- (c) What does the root at (1.5, 0) tell you about the polynomial (given there are integer coefficients.)?
- (d) Find an expression for the polynomial. Hint: it passes through (1, 25).

- 3. Consider the rational function $R(x) = \frac{4x^3 9x}{x^3 1}$
 - (a) What are the x-intercepts of the function?
 - (b) What is the y-intercept?
 - (c) What vertical asymptote(s) are there, if any?
 - (d) What is the horizontal asymptote?
 - (e) Complete the table of values (approximate, as appropriate) and sketch a graph.

*			\ 11		, 11 1		U 1			
x	-10	-2	-1.5	-1	0	0.5	1.1	2	10	
y										

4. Solve each equation.

(a)
$$\log_2(x^2 - 32) - \log_2(x + 8) = 1$$

(b)
$$4 = \frac{10}{1 + 4e^{-0.8t}}$$

- 5. The half-life of polonium-210 is 138 days. Suppose we have a 100-g sample.
 - (a) Find a function $m(t) = m_0 2^{-t/h}$ that models the mass remaining after t days.
 - (b) Find a function $m(t) = m_0 e^{-rt}$ that models the mass remaining after t days.
 - (c) How much of the sample will remain after 400 days?
 - (d) After how many days will only 20 g of the sample remain?
- 6. For the angles $\alpha = \arctan(3/4)$, $\beta = \arctan(\sqrt{3})$ simplify each of the following. (a) $\sin(\alpha + \beta)$.

(b) $\cos(2\alpha + \beta)$.

7. Find all solutions to each equation.

(a)
$$8\sin^3(x) - 4\sin^2(x) - 6\sin(x) + 3 = 0$$
 Hint: factor by grouping.

(b)
$$\sec \theta + \tan \theta = \frac{5}{3}$$

8. Complete the table of values and plot the polar function. $r = \sin \theta + \cos \theta$

complete the teste of vertee end plot the point function.							1 0000			
	θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
	r									

- 9. Consider the ellipse whose equation is $\frac{x^2}{9} + \frac{(y-2)^2}{16} = 1$
 - (a) Find the coordinates of center.
 - (b) Find the x-intercepts of the ellipse.
 - (c) Find the coordinates of the two foci.
 - (d) Write parametric equations for the ellipse.
 - (e) Sketch a graph for the ellipse

10. Consider the parametric equations

$$x = 2\tan(t)$$

- $y = 3 + 4\sec(t)$
- (a) Eliminate the parameter to find an equation relating x and y directly. Hint: $\sec^2(t) \tan^2(t) = 1$.
- (b) Tabulate values for t, x and y and use these to sketch a graph for the relation.