Math 12 - Precalculus Final Exam Solutions - Fall 2016

- 1. Find all zeros for each polynomial function.
 - (a) $f(x) = 2x^3 + x^2 3x + 1$.

ANS: First we need to find a rational zero. So $f(x) = (2x - 1)(x^2 + x - 1)$ xand the zeros are at $x = \frac{1}{2}$ and $x = \frac{1}{2}$ and $x = \frac{1}{2}$

x				y
0	2	1	-3	1
1	2	3	0	1

(b) $p(x) = x^5 - 3x^3 + x = x(x^2 + x - 1)(x^2 - x - 1)$. ANS: Isn't it nice this puppy is factored down to quadratics?

		_	-		
$\frac{1}{2}$	2	2	-2	0	

The zeros are now easy: $x = 0, \frac{-1 \pm \sqrt{5}}{2}, \frac{1 \pm \sqrt{5}}{2}$

- 2. Find a formula for the polynomial with integer coefficients whose graph is shown.
 - (a) What does the y-axis symmetry tell you about the polynomial?

ANS: The function is even, involving only even exponents in the expanded form.

(b) What can you deduce about the polynomial from its behavior at (0,0)?

ANS: There is a factor of $(x-0)^2 = x^2$

(c) What does the root at (1.5,0) tell you(d) Find an expression for the polynomial. Hint: about the polynomial (given there are integer coefficients.)?

ANS: There is a factor of $(2x-3)^2$ (it's a double root).

it passes through (1, 25).

ANS: There's also a factor of $(2x + 3)^2$, so all together, $f(x) = x^2((2x-3)(2x+3))^2 = x^2(4x^2-9)^2 = 16x^6-72x^4+81x^2$

- 3. Consider the rational function $R(x) = (4x^3 9x)/(x^3 1)$
 - (a) What are the x-intercepts?

ANS: $x = 0, \pm \frac{3}{2}$

(c) What vertical asymptote(s) are there?

ANS: x = 1

(b) What is the *y*-intercept? ANS: (0,0)

(d) What is the horizontal asymptote? ANS: y=4

(e) Complete the table of values (approximate, as appropriate) and sketch a graph.

		_			_					1			
\boldsymbol{x}	-10	-2	-1.5	-1	0	0.5	1.1	2	10				
y	3.9	14/9	0	-5/2	0	32/7	-13.82	2	3.9				
<u>'</u>						∱ y / !							
_	ļ	ļ	ļ	ļļ		5		ļ	<u> </u>		!		-
_	•												-
												У	į
-	10 -9	-8 -7	-6 -5	-4 -3 -2		/ !	2 3	4	5 6	7	8 9) 1	10
						\bigcirc							
-					+	-5+	+	†					-
-	ļ				·	10		i					
						i							
		1	1	1 1 1	1			1	1	1	1 1		

-15

Math 12 - Precalculus Final Examisalutions - Page 2 of 4

- 4. Solve each equation.
 - (a) $\log_2(x^2 32) \log_2(x + 8) = 1$ ANS: $\log_2(x^2 - 32) - \log_2(x + 8) = 1 \iff \log_2\frac{x^2 - 32}{x + 8} = 1 \iff \frac{x^2 - 32}{x + 8} = 2 \Leftrightarrow x^2 - 32 = 2x + 16 \Leftrightarrow x^2 - 2x - 48 = 0 \Leftrightarrow (x - 8)(x + 6) = 0$ and both solutions work in the original equation, so x = 8 or x = -6

(b)
$$4 = \frac{10}{1 + 4e^{-0.8t}}$$

ANS: $4 = \frac{10}{1 + 4e^{-0.8t}} \Leftrightarrow 4 + 16e^{-0.8t} = 10 \Leftrightarrow e^{-0.8t} = \frac{3}{8} \Leftrightarrow -0.8t = \ln \frac{3}{8} \Leftrightarrow t = \frac{5}{4} \ln \frac{8}{3} \approx 1.226036566264657796070563909315$

- 5. The half-life of polonium-210 is 138 days. Suppose we have a 100-g sample.
 - (a) Find a function $m(t) = m_0 2^{-t/h}$ that models the mass remaining after t days. ANS: $m(t) = 100 \cdot 2^{-t/138}$
 - (b) Find a function $m(t) = m_0 e^{-rt}$ that models the mass remaining after t days. ANS: $2^{-1/138} = e^r \Leftrightarrow r = -\frac{1}{138} \ln(2) \approx -0.00502280$ so $m(t) = 100e^{-0.00502t}$
 - (c) How much of the sample will remain after 400 days? ANS: $m(400) = 100e^{-2.009} \approx 13.41 \text{ g}$
 - (d) After how many days will only 20 g of the sample remain? ANS: $m(t) = 20 \Leftrightarrow 100e^{-0.00502t} = 20 \Leftrightarrow e^{-0.00502t} = 0.2 \Leftrightarrow t \approx \frac{\ln 0.2}{-0.00502} \approx 320.6 \text{ days}$
- 6. For the angles $\alpha = \arctan(3/4), \beta = \arctan(\sqrt{3})$ simplify each of the following.
 - (a) $\sin(\alpha + \beta)$. ANS: $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha = \frac{3}{5} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{4}{5} = \boxed{\frac{3 + 4\sqrt{3}}{10}}$
 - (b) $\cos(2\alpha + \beta)$. ANS: $\cos(2\alpha + \beta) = \cos(2\alpha)\cos\beta - \sin(2\alpha)\sin\beta = (2\cos^2\alpha - 1)\frac{1}{2} - 2\sin\alpha\cos\alpha\frac{\sqrt{3}}{2}$ $\left(2\left(\frac{4}{5}\right)^2 - 1\right) \cdot \frac{1}{2} - 2 \cdot \frac{3}{5} \cdot \frac{4}{5} \cdot \frac{\sqrt{3}}{2} = \boxed{\frac{7}{50} - \frac{12\sqrt{3}}{25} \approx -0.6914}$
- 7. Find all solutions to each equation.
 - (a) $8 \sin^3(x) 4 \sin^2(x) 6 \sin(x) + 3 = 0$ *Hint*: factor by grouping. ANS: $4 \sin^2(x) (2 \sin x - 1) - 3(2 \sin(x) - 1) = 0 \Leftrightarrow (4 \sin^2(x) - 3)(2 \sin(x) - 1) = 0$ So either $4 \sin^2(x) - 3 = 0 \Leftrightarrow \sin(x) = \pm \frac{\sqrt{3}}{2} \Leftrightarrow \boxed{x = \frac{\pi(6k + 3 \pm 1)}{6}}$ or $\sin(x) = \frac{1}{2} \Leftrightarrow \boxed{x = \frac{\pi(6k + 3 \pm 1)}{3}}$

(b)
$$\sec \theta + \tan \theta = \frac{5}{3}$$

 $\sec \theta + \tan \theta = \frac{5}{3} \Leftrightarrow \sec \theta = \frac{5}{3} - \tan \theta \Rightarrow \tan^2 \theta + 1 = \frac{25}{9} - \frac{10}{3} \tan \theta + \tan^2 \theta \Leftrightarrow \frac{10}{3} \tan \theta = \frac{16}{9} \Leftrightarrow \tan \theta = \frac{8}{15} \Leftrightarrow \theta = \arctan \frac{8}{15} + k\pi$

8. Complete the table of values and plot the polar function. $r = \sin \theta + \cos \theta$

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
r	1	$\frac{1+\sqrt{3}}{2}$	$\sqrt{2}$	$\frac{1+\sqrt{3}}{2}$	1	$\frac{-1+\sqrt{3}}{2}$	0	$\frac{1-\sqrt{3}}{2}$	-1

You can convert this to rectangular form: $r = \sqrt{2}\sin\left(\theta + \frac{\pi}{4}\right), \text{ is a rotation by } -\frac{\pi}{4} \text{ of } \\ r = \sqrt{2}\sin\theta \Leftrightarrow r^2 = \sqrt{2}r\sin\theta \Leftrightarrow x^2 + y^2 = \\ \sqrt{2}y \Leftrightarrow x^2 + \left(y - \frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}, \text{ a circle of } \\ \text{radius } \frac{\sqrt{2}}{2}, \text{ centered at } \left(0, \frac{\sqrt{2}}{2}\right)$

- 9. Consider the ellipse whose equation is $\frac{x^2}{9} + \frac{(y-2)^2}{16} = 1$
 - (e) Sketch a graph for the ellipse.
 - (a) Find the coordinates of center. ANS: (0,2)
 - (b) Find the x-intercepts of the ellipse. ANS: If y=0, then $\frac{x^2}{9}=\frac{3}{4}\Leftrightarrow x=\pm\frac{3\sqrt{3}}{2}$

(d) Write parametric equations for the ellipse. ANS: $x = 3\cos(t), y = 2 + 4\sin(t)$

Math 12 - Precalculus Final ExarFisSoluEixms - Page 4 of 4

10. Consider the parametric equations

$$x = 2\tan(t)$$
$$y = 3 + 4\sec(t)$$

(a) Eliminate the parameter to find an equation relating x and y directly. Hint: $\sec^2(t) - \tan^2(t) = 1$.

$$\sec^{2}(t) - \tan^{2}(t) = 1.$$
ANS: $\frac{(y-3)^{2}}{16} - \frac{x^{2}}{4} = \sec^{2}(t) - \tan^{2}(t) = 1$

(b) Tabulate values for t, x and y and use these to sketch a graph for the relation.

t	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π	
x	0	2	NAN	-2	0	2	NAN	-2	0	
y	7	$3+4\sqrt{2}$	NAN	$3-4\sqrt{2}$	-1	$3-4\sqrt{2}$	NAN	$3+4\sqrt{2}$	7	

