Math 12 – Redemption Synthesis Test 2 – spring '09Name_____Write all responses on separate paper. Show your work for credit.

- 1. Let $f(x) = \ln(2x^3 x^2 4x + 3)$.
 - a. List the possible rational zeros of $2x^3 x^2 4x + 3$ according to the theorem on rational zeros.
 - b. Find all the *x*-intercepts of *f*. Remember that $\ln(1) = 0$ is equivalent to $e^0 = 1$. Show how to do this without a calculator.
 - c. List the vertical asymptotes as equations in the form: x = constant.
 - d. What is the domain of f?
- 2. Let $f(x) = e^{4x} 5e^{2x} + 4$
 - a. Solve f(x) = 0.
 - b. Solve f(x) = 4.

3. Find a polynomial with integer coefficients and zeros at $x = \frac{3}{4}$, $x = \frac{\sqrt{2}}{2}$ and $x = \sqrt{2}i$. Write the polynomial in descending powers form.

- 4. Let $p(x) = 8x^3 4x^2 6x + 3$.
 - a. Find the 3 zeros of p. Write these in exact, simplified form.
 - b. Find at least 4 different solutions to $p(\cos(t)) = 0$.
- 5. Find the vertical asymptotes of $y = \frac{1}{2\sin^2(2x) 3\sin(2x) + 1}$

Math 12 – Redemption Synthesis Test 2 Solutions.

- 1. Let $f(x) = \ln(2x^3 x^2 4x + 3)$.
 - a. List the possible rational zeros of $2x^3 x^2 4x + 3$ according to the theorem on rational zeros. SOLN: $\left\{ \pm x \mid x = 1, 3, \frac{1}{2}, \frac{3}{2} \right\}$
 - b. Find all the *x*-intercepts of *f*. Remember that $\ln(1) = 0$ is equivalent to $e^0 = 1$. Show how to do this without a calculator. SOLN: For the *x*-intercepts, solve $2x^3 - x^2 - 4x + 3 = 1 \Leftrightarrow 2x^3 - x^2 - 4x + 2 = 0$. Since the coefficients are integers, the rational zeros must be in the set $\left\{ \pm x \mid x = 1, 2, \frac{1}{2} \right\}$. Since the

polynomial changes sign between x = 0 and x = 1, it makes sense to check $x = \frac{1}{2}$ and, indeed, it is a root: $2x^3 - x^2 - 4x + 2 = (2x-1)(x^2 - 2)$, which you can also find by grouping. So the *x*-intercepts are $(\frac{1}{2}, 0)$, $(-\sqrt{2}, 0)$ and $(\sqrt{2}, 0)$.

c. List the vertical asymptotes as equations in the form: x = constant. SOLN: The vertical asymptotes are where $2x^3 - x^2 - 4x + 3 = (x-1)^2 (2x+3) = 0$. That is, x = 1

and $x = -\frac{3}{2}$

d. What is the domain of f? SOLN: The domain is where $2x^3 - x^2 - 4x + 3 = (x-1)^2 (2x+3) > 0$ $\Leftrightarrow x \neq 1$ and 2x + 3 > 0

In interval notation, the domain is $\left(-\frac{3}{2},1\right)\cup(1,\infty)$.

As a bonus, it's worth examining the graph: (at right.) Note the *y*-intercept is ln(3), a tad bit bigger than 1, as 3's a little more than *e*.

2. Let $f(x) = e^{4x} - 5e^{2x} + 4$ a. Solve f(x) = 0. SOLN: $f(x) = e^{4x} - 5e^{2x} + 4 = 0 \Leftrightarrow (e^{2x} - 4)(e^{2x} - 1) = 0$ $\Leftrightarrow (e^x - 2)(e^x + 2)(e^x - 1)(e^x + 1) = 0$ $\Leftrightarrow (e^x - 2)(e^x - 1) = 0$, so x = 0 or $x = \ln 2 \sim 0.69$. b. Solve f(x) = 4. SOLN: $f(x) = e^{4x} - 5e^{2x} + 4 = 4$ $\Leftrightarrow e^{4x} - 5e^{2x} = e^{2x}(e^{2x} - 5) = 0$ $\Leftrightarrow e^{2x} - 5 = 0 \Leftrightarrow x = \ln \sqrt{5}$

3. Find a polynomial with integer coefficients and zeros at $x = \frac{3}{4}$, $x = \frac{\sqrt{2}}{2}$ and $x = \sqrt{2}i$.

Write the polynomial in descending powers form. SOLN: $(4x-3)(2x^2-1)(x^2+2) = (4x-3)(2x^4+3x^2-2) = 8x^5-6x^4+12x^3-9x^2-8x+6$

4. Let $p(x) = 8x^3 - 4x^2 - 6x + 3$.

a. Find the 3 zeros of *p*. Write these in exact, simplified form. SOLN: $p(x) = 8x^3 - 4x^2 - 6x + 3 = 0$ has integer coefficients so the rational solutions must be

contained in the set $\left\{ \pm x \mid x = 1, 3, \frac{1}{2}, \frac{3}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8} \right\}$.

in	÷		- 2	out
0	8	-4	-6	3
1	8	4	-2	1
3/2	8	8	6	12 ← 3/2 is an upper bound on the zeros
-1	8	-12	6	$-3 \leftarrow -1$ is an lower bound on the zeros.
-1/2	8	-8	-2	2 and there is a zero between 0 and -1
-3/4	8	-10	3/2	15/8 ← the zero between -3/4 and -1 is irrational
1/2	8	0	-6	0 ← should've looked there first!

Searching, we find $x = \frac{1}{2}$ is a zero, thus, $p(x) = (2x-1)(4x^2-3)$ and the zeros are $\left\{\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right\}$

Note that p can also be factored by grouping: $p(x) = 8x^3 - 4x^2 - 6x + 3 = 4x^2(2x-1) - 3(2x-1)$

b. Find at least 4 different solutions to $p(\cos(t)) = 0$.

SOLN: From the above, $\cos(t) = \frac{1}{2}$ or $\cos t = \pm \frac{\sqrt{3}}{2}$.

These correspond to the points on the unit circle shown at right. Points E and F correspond to $\cos(t) = \frac{1}{2}$ and are arrived at by any value of t in the form $t = \pm \frac{\pi}{3} + 2\pi k, k \in \mathbb{Z}$ and the points A, B, C, D where $\cos t =$

where
$$\cos t = \pm \frac{\sqrt{3}}{2}$$
 are described by
 $t = \pm \frac{\pi}{6} + k\pi, k \in \mathbb{Z}$

It's worth looking at some graphs here. On the left is y = p(x) and on the right, $y = p(\cos(x))$

5. Find the vertical asymptotes of $y = \frac{1}{2\sin^2(2x) - 3\sin(2x) + 1}$ SOLN: The vertical asymptotes are where $2\sin^2(2x) - 3\sin(2x) + 1 = 0$ This factors, $(2\sin(2x)-1)(\sin(2x)-1)=0$. By the zero product principle, either $2\sin(2x) - 1 = 0 \Leftrightarrow \sin(2x) = \frac{1}{2}$ or $\sin(2x) - 1 = 0 \Leftrightarrow \sin(2x) = 1$ This means that $2x = \frac{\pi}{2} \pm \frac{\pi}{3} + 2\pi k = \frac{(4k+1)\pi}{2} \pm \frac{\pi}{3} \Leftrightarrow x = \frac{(4k+1)\pi}{4} \pm \frac{\pi}{6}$ or $2x = \frac{\pi}{2} + 2\pi k = \frac{(4k+1)\pi}{2} \Leftrightarrow \left| x = \frac{(4k+1)\pi}{4} \right|$ The first set contains angles like $\frac{\pi}{4} \pm \frac{\pi}{6} = \frac{\pi}{12}$ or $\frac{5\pi}{12}$ and $\frac{5\pi}{4} \pm \frac{\pi}{6} = \frac{13\pi}{12}$ or $\frac{17\pi}{12}$ The second set contains angles such as $\frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}$, and so on. Here's a graph of this function with the vertical asymptotes as dashed lines: d a b q 20 15 -10 5 -2 -1 0 i. ż з́ 4 -5 -10 -15 -20