Math 12 - Redemption Synthesis Test 2 - spring '09 Name
Write all responses on separate paper. Show your work for credit.

1. Let $f(x)=\ln \left(2 x^{3}-x^{2}-4 x+3\right)$.
a. List the possible rational zeros of $2 x^{3}-x^{2}-4 x+3$ according to the theorem on rational zeros.
b. Find all the x-intercepts of f. Remember that $\ln (1)=0$ is equivalent to $e^{0}=1$. Show how to do this without a calculator.
c. List the vertical asymptotes as equations in the form: $x=$ constant.
d. What is the domain of f ?
2. Let $f(x)=e^{4 x}-5 e^{2 x}+4$
a. Solve $f(x)=0$.
b. Solve $f(x)=4$.
3. Find a polynomial with integer coefficients and zeros at $x=\frac{3}{4}, x=\frac{\sqrt{2}}{2}$ and $x=\sqrt{2} i$. Write the polynomial in descending powers form.
4. Let $p(x)=8 x^{3}-4 x^{2}-6 x+3$.
a. Find the 3 zeros of p. Write these in exact, simplified form.
b. Find at least 4 different solutions to $p(\cos (t))=0$.
5. Find the vertical asymptotes of $y=\frac{1}{2 \sin ^{2}(2 x)-3 \sin (2 x)+1}$

Math 12 - Redemption Synthesis Test 2 Solutions.

1. Let $f(x)=\ln \left(2 x^{3}-x^{2}-4 x+3\right)$.
a. List the possible rational zeros of $2 x^{3}-x^{2}-4 x+3$ according to the theorem on rational zeros.

SOLN: $\left\{ \pm x \mid x=1,3, \frac{1}{2}, \frac{3}{2}\right\}$
b. Find all the x-intercepts of f. Remember that $\ln (1)=0$ is equivalent to $e^{0}=1$. Show how to do this without a calculator.
SOLN: For the x-intercepts, solve $2 x^{3}-x^{2}-4 x+3=1 \Leftrightarrow 2 x^{3}-x^{2}-4 x+2=0$. Since the coefficients are integers, the rational zeros must be in the set $\left\{ \pm x \mid x=1,2, \frac{1}{2}\right\}$. Since the polynomial changes sign between $x=0$ and $x=1$, it makes sense to check $x=1 / 2$ and, indeed, it is a root: $2 x^{3}-x^{2}-4 x+2=(2 x-1)\left(x^{2}-2\right)$, which you can also find by grouping. So the x intercepts are $\left(\frac{1}{2}, 0\right),(-\sqrt{2}, 0)$ and $(\sqrt{2}, 0)$.
c. List the vertical asymptotes as equations in the form: $x=$ constant.

SOLN: The vertical asymptotes are where $2 x^{3}-x^{2}-4 x+3=(x-1)^{2}(2 x+3)=0$. That is, $x=1$ and $x=-\frac{3}{2}$
d. What is the domain of f ?

SOLN: The domain is where
$2 x^{3}-x^{2}-4 x+3=(x-1)^{2}(2 x+3)>0$
$\Leftrightarrow x \neq 1$ and $2 x+3>0$
In interval notation, the domain is $\left(-\frac{3}{2}, 1\right) \cup(1, \infty)$.
As a bonus, it's worth examining the graph: (at right.) Note the y-intercept is $\ln (3)$, a tad bit bigger than 1 , as 3 's a little more than e.

2. Let $f(x)=e^{4 x}-5 e^{2 x}+4$
a. Solve $f(x)=0$. SOLN:

$$
\begin{aligned}
& f(x)=e^{4 x}-5 e^{2 x}+4=0 \Leftrightarrow\left(e^{2 x}-4\right)\left(e^{2 x}-1\right)=0 \\
& \Leftrightarrow\left(e^{x}-2\right)\left(e^{x}+2\right)\left(e^{x}-1\right)\left(e^{x}+1\right)=0 \\
& \Leftrightarrow\left(e^{x}-2\right)\left(e^{x}-1\right)=0, \text { so } x=0 \text { or } x=\ln 2 \sim 0.69 .
\end{aligned}
$$

b. Solve $f(x)=4$.

SOLN: $f(x)=e^{4 x}-5 e^{2 x}+4=4$
$\Leftrightarrow e^{4 x}-5 e^{2 x}=e^{2 x}\left(e^{2 x}-5\right)=0$
$\Leftrightarrow e^{2 x}-5=0 \Leftrightarrow x=\ln \sqrt{5}$

3. Find a polynomial with integer coefficients and zeros at $x=\frac{3}{4}, x=\frac{\sqrt{2}}{2}$ and $x=\sqrt{2} i$.

Write the polynomial in descending powers form.
SOLN: $(4 x-3)\left(2 x^{2}-1\right)\left(x^{2}+2\right)=(4 x-3)\left(2 x^{4}+3 x^{2}-2\right)=8 x^{5}-6 x^{4}+12 x^{3}-9 x^{2}-8 x+6$
4. Let $p(x)=8 x^{3}-4 x^{2}-6 x+3$.
a. Find the 3 zeros of p. Write these in exact, simplified form.

SOLN: $p(x)=8 x^{3}-4 x^{2}-6 x+3=0$ has integer coefficients so the rational solutions must be contained in the set $\left\{ \pm x \mid x=1,3, \frac{1}{2}, \frac{3}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}\right\}$.

Searching, we find $x=1 / 2$ is a zero, thus, $p(x)=(2 x-1)\left(4 x^{2}-3\right)$ and the zeros are $\left\{\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right\}$
Note that p can also be factored by grouping: $p(x)=8 x^{3}-4 x^{2}-6 x+3=4 x^{2}(2 x-1)-3(2 x-1)$
b. Find at least 4 different solutions to $p(\cos (t))=0$.

SOLN: From the above, $\cos (t)=1 / 2$ or $\cos t= \pm \frac{\sqrt{3}}{2}$.
These correspond to the points on the unit circle shown at right. Points E and F correspond to $\cos (t)=1 / 2$ and are arrived at by any value of t in the form $t= \pm \frac{\pi}{3}+2 \pi k, k \in \mathbb{Z}$ and the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ where $\cos t= \pm \frac{\sqrt{3}}{2}$ are described by
$t= \pm \frac{\pi}{6}+k \pi, k \in \mathbb{Z}$

It's worth looking at some graphs here. On the left is $y=p(x)$ and on the right, $y=p(\cos (x))$

5. Find the vertical asymptotes of $y=\frac{1}{2 \sin ^{2}(2 x)-3 \sin (2 x)+1}$

SOLN: The vertical asymptotes are where $2 \sin ^{2}(2 x)-3 \sin (2 x)+1=0$
This factors, $(2 \sin (2 x)-1)(\sin (2 x)-1)=0$. By the zero product principle,
either $2 \sin (2 x)-1=0 \Leftrightarrow \sin (2 x)=\frac{1}{2}$ or $\sin (2 x)-1=0 \Leftrightarrow \sin (2 x)=1$
This means that $2 x=\frac{\pi}{2} \pm \frac{\pi}{3}+2 \pi k=\frac{(4 k+1) \pi}{2} \pm \frac{\pi}{3} \Leftrightarrow x=\frac{(4 k+1) \pi}{4} \pm \frac{\pi}{6}$
or $2 x=\frac{\pi}{2}+2 \pi k=\frac{(4 k+1) \pi}{2} \Leftrightarrow x=\frac{(4 k+1) \pi}{4}$
The first set contains angles like $\frac{\pi}{4} \pm \frac{\pi}{6}=\frac{\pi}{12}$ or $\frac{5 \pi}{12}$ and $\frac{5 \pi}{4} \pm \frac{\pi}{6}=\frac{13 \pi}{12}$ or $\frac{17 \pi}{12}$
The second set contains angles such as $\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}$, and so on.
Here's a graph of this function with the vertical asymptotes as dashed lines:

