Math 12 - Redemption Synthesis Test 1 - spring '09 Name
Write all responses on separate paper. Show your work for credit.

1. Note that the exponential function $f(x)=e^{x}$ is often written as $f(x)=\exp (x)$.

Let $p(x)=1-\exp \left(\left(3 x^{2}-4\right)\left(x^{2}-3\right)\right)$. Find the x-intercepts of p.
2. Let $L(x)=\log _{6}\left(x^{3}-6 x^{2}+11 x-6\right)$
a. Solve for $x: L(x)=1$.
b. Where are the vertical asymptotes of $L(x)$?
3. Let $p(x)=8 x^{4}-6 x^{2}+1$
a. List all possible rational roots according tot the theorem on rational roots.
b. Use synthetic division and the remainder theorem to show that $x=1 / 2$ is a zero of p.
c. Find all vertical asymptotes of the function $f(x)=\frac{1}{p(x)}$.
4. Find a polynomial with integer coefficients and zeros at $x=\frac{2}{5}, x=\frac{\sqrt{3}}{2}$ and $x=2 i$.

Write the polynomial in descending powers form.
5. Let $p(x)=2 x^{4}-3 x^{2}+1$.
a. Find the 4 zeros of p. Write these in exact, simplified form.
b. Find at least 4 different solutions to $p(\sin (t))=0$.
6. The future value of an investment P in an account yielding annual interest rate r after n years is given by the formula $V=\frac{P \cdot r}{1-(1+r)^{n}}$.

Math 12 - Redemption Synthesis Test 1 Solutions.

1. Note that the exponential function $f(x)=e^{x}$ is often written as $f(x)=\exp (x)$.

Let $p(x)=1-\exp \left(\left(3 x^{2}-4\right)\left(x^{2}-3\right)\right)$. Find the x-intercepts of p.
SOLN: The x-intercepts are where

$$
p(x)=0 \Leftrightarrow \exp \left(\left(3 x^{2}-4\right)\left(x^{2}-3\right)\right)=1 \Leftrightarrow\left(3 x^{2}-4\right)\left(x^{2}-3\right)=0 \Leftrightarrow 3 x^{2}-4=0 \text { or } x^{2}-3=0
$$

This means the x-intercepts are $\left(\frac{2 \sqrt{3}}{3}, 0\right),\left(-\frac{2 \sqrt{3}}{3}, 0\right),(\sqrt{3}, 0)$ and $(-\sqrt{3}, 0)$
To be sure, here are some computer generated graphs of this function:

These are actually the same graph with radically different scales on the vertical axis. This reminds me of the counter-intuitive notion that Earth is actually much smoother than a typical cue-ball in pool.
2. Let $L(x)=\log _{6}\left(x^{3}-6 x^{2}+11 x-6\right)$
a. Solve for $x: L(x)=1$.

SOLN: $L(x)=\log _{6}\left(x^{3}-6 x^{2}+11 x-6\right)=1 \Leftrightarrow x^{3}-6 x^{2}+11 x-6=6^{1} \Leftrightarrow x^{3}-6 x^{2}+11 x-12=0$
The rational zeros are in the set $\pm\{1,2,3,4,6,12\}$ so using synthetic division (at right) we find that $x=4$ is a zero so that $x^{3}-6 x^{2}+11 x-12=(x-4)\left(x^{2}-2 x+3\right)$ and since the quadratic factor has discriminant $=-8<0$, the only x-intercept is $(4,0)$
The other zeros are where $x=1 \pm \sqrt{2} i$
b. Where are the vertical asymptotes of $L(x)$?

in				out
0	1	-6	11	-12
1	1	-5	6	-6
2	1	-4	3	-6
3	1	-3	2	-6
4	1	-2	3	0

SOLN: The vertical asymptotes are where $x^{3}-6 x^{2}+11 x-6=0$. The rational zeros are in the set $\pm\{1,2,3,6\} x^{3}-6 x^{2}+11 x-6=(x-1)\left(x^{2}-5 x+6\right)=(x-1)(x-2)(x-3)=0 \Leftrightarrow x \in\{1,2,3\}$
So the vertical asymptotes are $x=1, x=2$, and $x=3$

3. Let $p(x)=8 x^{4}-6 x^{2}+1$
a. List all possible rational roots according tot the theorem on rational roots.

SOLN: $\pm\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$
b. Use synthetic division and the remainder theorem to show that $x=1 / 2$ is a zero of p.

SOLN: | $1 / 2$ | 8 | 0 | -6 | 0 | 1 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| | | 4 | 2 | -2 | -1 | so $p(x)=(2 x-1)\left(4 x^{3}+2 x^{2}-2 x-1\right)$

c. Find all vertical asymptotes of the function $f(x)=\frac{1}{p(x)}$.

SOLN: The other zeros must be zeros of the quotient, $4 x^{3}+2 x^{2}-2 x-1$. After some experimentation we find that $-1 / 2$ is also a zero so that $p(x)=(2 x-1)(2 x+1)\left(2 x^{2}-1\right)$
So the vertical asymptotes are $x=\frac{1}{2}, x=-\frac{1}{2}, x=\frac{\sqrt{2}}{2}, x=-\frac{\sqrt{2}}{2}$

4. Find a polynomial with integer coefficients and zeros at $x=\frac{2}{5}, x=\frac{\sqrt{3}}{2}$ and $x=2 i$.

Write the polynomial in descending powers form.
SOLN: The factor $5 x-2$ will yield the rational zero. The irrational zero is accommodated by the factor $4 x^{2}-3$ and the imaginary zero will result from a factor of $x^{2}+4$. All together, the polynomial is $(5 x-2)\left(4 x^{2}-3\right)\left(x^{2}+4\right)=(5 x-2)\left(4 x^{4}+13 x^{2}-12\right)=20 x^{5}-8 x^{4}+65 x^{3}-26 x^{2}-60 x-24$
5. Let $p(x)=2 x^{4}-3 x^{2}+1$.
a. Find the 4 zeros of p. Write these in exact, simplified form.

SOLN: $p(x)=2 x^{4}-3 x^{2}+1=\left(2 x^{2}-1\right)\left(x^{2}-1\right)=2\left(x-\frac{\sqrt{2}}{2}\right)\left(x+\frac{\sqrt{2}}{2}\right)(x-1)(x+1)$
So the solutions are $x= \pm \frac{\sqrt{2}}{2}$ and $x= \pm 1$
b. Find at least 4 different solutions to $p(\sin (t))=0$.

SOLN: We want either $\sin (t)= \pm \frac{\sqrt{2}}{2}$ or $\sin (t)= \pm 1$. Thus either $t=\frac{\pi}{4}+\frac{k \pi}{2}=\frac{(2 k+1) \pi}{4}$ (any
odd multiple of π over 4. or $t=\frac{(2 k+1) \pi}{2}$ (any odd multiple of π over 2.)

