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CHAPTER 8 Polar Coordinates and Veptor's
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polar axis

" related to rectangular coordinates.

..We use the ¢6nvention that 8 js positive if measured in a counterclockwise diréclion * 4
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Figure 2

‘Solution  The points are plotted in Figure 3. Note that the point in part (d) lies

that a boat is sailing at 10 knots to the northeast, We catt also express th;s
by drawing an arrow of length 10 in the direction of travel. The velocity ¢
pletely described by the displacement of the arrow from tail to head, w
press as the vector {5V2, 5V/2) (see the figure).

. In the Focus on Modeling (page 630) we will see how polar coordinates
to draw a (flat) map of a (spherical) world. In the Discovery Project on pag
explore how an analysis of the vector forces of wmd and current can be s
igate a sailboat. :
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In this section we define polar coordinates, and we learn how polar comchmtes w F

Definition of Polar Coordinates

The polar coordinate system wses distances and directions to specify the lomtmn of
a point in the plane. To set up this system, we choose a fixed point O in the plang
called the pole (or origin) and draw from O a ray (half-line) called the polar axis &
in Figure 1. Then each point P can be assigned polar coordinates P{r, §) where

r is the distance from O to P

@ is the angle between the polar axis and the segment OP

from the polar axis or negative if measured in a clockwise direction. If r is :1cgqtl\e;<'_:'f-
then P(r, 8) is defined to be the point that lies | r | units from the pole in the direction .}
opposite to that given by @ (see Figure 2) ! '
: Plotting Points in Polar Coordinates - £ 3

Plot the points whose polar coordinates are given,

(@) (1,37/4) ) (3, —7/6) © (3.3m) @ (~4m/4)

4 units from the origin along the angle: Sarf4, because the given value of ri negali\f' _ .
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Note thiat the coordinates (r,8) and{—r, 6-+ ) represent thé saine paint, as shown’
in Figure 4. Moreover, because the angles 6 + 2nr (where 1 is any integer) all have

" the same terminal side as the angle 0, each point in the plane has infinitely many rep-

resentations in polar coordinates. In fact, any point Plr,
P(=,0 + (2n + 1))

8) can also be represented by -
P(r,0 + 2n7) and '
for any integer 7. '

o PULO)
: - P{i=rs i+ ) -

" Figured 7

!f* i Different Polar Coordinates for the Same Point

i

(a) Craph the point with polar coordinates P(2,/3).
(b) Find two other polar coordinate representations of P with ¥ > 0, and two with
r<0.

Solution
(a) The graphi is shown in Figure 5(a)-
(b) Other representations with » > O are

T . TFar
{2 vom)=1{2,—
(2’3 ”) (2’ 3)
(2 T Zw) = (2 ——51) Add —2mtof
3 3 3 3 . = H

Other representations with 7 < 0 are

T - 4ar
Ly T Y .
( >3 '”) ‘ ( % 3)
¥ 27 ‘
('—2 _— 'n') = (—2, —HB—) Replace roy —rand add —7 100

ent the same point.

Add 2w to 8

Replace rby —rand.add 7w to 8

The graphs in Figore 3 explain why these coordinates repres
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CHA'F'TER 8 Polar Coordinates and Vectors

. Situations often arise in which we need to consider polar and rectangular coqyg;

‘and the Pythagorean Theorem. (Although we have pictured the case where

Figure 6

Figure 7

Csor=2V2or —2/3, Also

50 8 = 3a7/4 or —ar/4. Since the point (2, —2) lies in quadrant IV (see Fignie T

Reiation‘ship"betweenP'o!ar‘ o
and Rectangular Coordinates

Hlleg
Ife 6
OWwin
Letigng
> Oﬂﬂd |

simultaneously. The connection between the two systems is illustrated jn Fig,
where the polar-axis coincides with the positive x-axis. The formulas i the gy
box are obtained from the figure using the definitions of the trigonometric fy,

@ is acute, the formulas hold for any angle & and for any value of r.)

Relatidnship_b_etween Polar and Rectangular Coordinates

1. Tochange from polar to rectangular coordinates, use the formulas
x=rcosf and y=rsing

2. To change from rectangular to polar coordinates, use the formulas

P2=32+3" .and tanf %'% (x'# 0)

“Example 3 : Converting Polar Coordinates
to Rectangular Coordinates

Find rectangular coordinates for the point that has polar coordinates {4, 2m/3),

Solution * Since r = 4 and 8 = 24/3, we have

dar VAR A
- = y g=4 g ) =2
X = Fcos cos?’ _ ( 2)

2 3 )
yo raing = dsin 2 = 4. %2 22V

Thus, the point has fectangular coordinates {(—2,2V3). -

Example 4 Converting Rectangular Coordinates ,..;
' to Polar Coordinates ' =

Find polar coordinates for the point that has rectangular coordinaies (2, —~2}
Solution— Usingx =2,y = ;;22 we gt '
‘ P =at y' =27+ (—72)2 =8

T2 _

-1
2

tan8=z=
x

we can represent it in polar coordinates as (2 V2, —m[4) or (=22, a7 f4). ‘7
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Note that the equations relating polar and rectangnlar coordinates do not uniquely
determine ror 6. When we use these equations to find the polar coprdinates of a point,
we must be careful that the values we choose fo1 rand 8 g:ve usa pomt in the correct
quadrant, as we saw in Example 4, '

.Pofar Equations

In Exampies 3 and 4 we converted points from one coordinate system to the other.

Now we consider {He same pr oblem for equaimns

Examp!e 5 Convertmg an Equation from Rectangular
to Polar Coordmates

‘Express the equation x? = 4y in poiar coordinates.

Solution We use the formulas x = r cos § and y = r sin 4.
x2 =4y ~ Rectangular equation

{r cos 9)27 = 4(rsin 3.) Substitite x = rcos 0,y = rsin g

r?cos’0 = 4rsin @ Expand ~
sin@ - :
r=4-— Divide by r cos®
cos*f

¥ = 4sec@tanf Simplify - B

As Example 5 shows, converting from rectangular to polar coordinates is straight-
forward—just replace x by r cos & and y by r sin 8, and then simplify. But converting
polar equations to rectangular form often requires more thought.

‘Example 6 Converting Equations from Polar | ﬁ‘
to Rectangular Coordinates , o=l

Express the polar equation in rectangular coordinates. If possible, determine the '
graph of the equation from its rectangular form.

{a} r=5sécl (b) r=2sind {c) r=2+2cosh

Solution

. (8) Since sec 6 = 1/cos 8, we multiply both sides by cos 8.

r=>5sect
T cos 6=75 : M'ultiply by cos O
x=15 Substitute x = rcos §

The graph of x = 5 is the vertical line in Figure 8.
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1

(b) We multiply both s:des of the equation by r, because then we can use ghe
formulas r*=x*+y*and rsinf =y.

=2rsing - Mulbiply by r

2 4yt =2y 2= X2+ y2and rein § = ¥
?+yt—2y=0 - Subtract 2y .
x* + (y - 1)2- =1 Cbmplete the equar.é iy

This is the equation of a circle of radms 1 centered at the point (0 1) Teis
graphed in Figure 9.

Figure 9 {c) We first multiply both sides of the equation by 7.
| r* =2r + 2rcos @

Using r* = x” + y? and x = r cos 6, we can convert two of the three térs in
- the equation into rectangular coordinates, but eliminating the Temaining r
requires more w01k

x* by =2r +2x 2= 5%+ yP and rcos 8 =
x4y - 2x. = 2r Subtract 2x
(x4 y? - ZX)E = 4r* Sguare both sides
(P2 —2x) =4+ ¥ Pl y2
In this casé the rectangular equation looks more coxﬂpliéated than the polar

equation. Although we cannot casily dcter;mne the graph of the equation from
* its rectangular form, we will see in the next sectlon how to graph it using the

polar equation:
N 3 P I = RURURE P O R AR
IER < Exerciges b

1-6 = Plot the point that has the given polar coordinates. 13. {4, 3n /4y ce 14, (4, —3u/4)
L (4,7/4) 2, (1,0) 3, (6, —7/6) '
4, (3, —2#/3) 5. (—2,4%[3) 6. (—5,—17xn/6)

7—12 = Plot the point that has the given polar coordinates. Then 17. (4, —237/4) : _ -18'_ (=4,237/4) o

give two othef polar coordinate representations of the point, one o ol -
with » < (and the other with r > 0. - 19, (—4, 1.01'”'/4) - 20. “ 1037r[4) :

7. (3, wf2) 3 _8. (2,3w/4) S 9. (-1, 7w/6)7

10, (-2, '_,,T /3) 11, (__5 0) (3 1) _ - 21-22 = A point is graphed in rect.a_pg'ula'r'fo,rm.Find,_pohlf
‘ coordinates for the point, with r > 0 and 0 << 8 < 2w.

15, (—4, —m/4) 16, (—4, 137/4)

13-20 w Determine which point in ihe ﬁgure P 0, R, or §, has .
the given polar coordinates. ~21.
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C ;.'.! 8 Apointis graphed.in polar form. Find its rectangalar

C

45:32 ® Find the réctangular coordinates for the poifit whose
“polar coordindies are given. T

8. {4,1/6)
(VE,~/4)

| 0.6.57)

{4 (6V2, 117/6)

26, (6,27/3)
28. (—1,57/2)

30 (0,137)

32, (V3, —57/3)

“1B-40 ® Convert the rectangular coordinates to polar
“eoordinates with » > D and 0 = @ < 2ir,

oL
B (VE,VE)

{034

B, (——5,(})

34, (3V3,-3)
36. (—V6, ~V?2)
38, (1,-2)

- 40, (0, —V3)

44-46 ® Convert the equation to polar form.
A2y =9

"Graphs of Polar Equations

SECTION 8.2 Graphs of Polar Equations 587

43, y=x" 44, y=13

45. x:4 : ' ’ 46.'x2—y2-.::

47-60 ® Convert the polar equation to rectanguiar

coordinates. :
4

-4 =T ) - 48, G =ar

49, rcos B = 6 ’ 50, r = 6cosf
51.' r? =tan'® 52. r® = sin 20
' 1 ) - 1
5_3.r=m,‘ ,.54.'r=-m
55, r=1+cosd '56.‘r-=—'-—4—.f

1+ 2sind

57. r=12secl 58, :';—2~cosﬂ

59, sec§ =2 60, cos20=1

Discovery ¢ Discussion

61, The Distance Formulé in Polar Coordinates

{(a) Use the Law of Cosines to prove that the distance
between the polar points {ry, &) and (75, 6,) is

d= V7t + 13— 2rycos(fy — 01)

(b) Find the distance between the points whose polar
coordinates are (3, 3m/4) and (1, 77/6), using the
formula from part (a).

{¢) Now convert the points in part (b) fo rectangular

- coordinates. Find the distance between them using
the usual Distance Formula. Do you get the same

- answer?

The graph of a polar equation # = §(0) consists of all points P that have at least one
polar representation (r, ) whose coordinates satisfy the equation. Many curves that
arise in mathematics and its applications are more easily and naturally represented.by
polat equations rather than rectangular equations,  ~ :

A rectangular grid is helpful for plotting points in rectangular coordinates
(see Figure 1(a) on the next page). To plot points in polar coordinates, it is conven-




