Math 12 - Precalculus - Chapter 11 test - fall '09 Name
Show your work for credit. Write all responses on separate paper.
In $1-2$, verify the identity.

1. $\frac{1}{1-\cos \theta}-\frac{1}{1+\cos \theta}=2 \csc \theta \cot \theta$
2. $\sin x+\sqrt{3} \cos x=2 \sin \left(x-\frac{\pi}{6}\right)$

In $3-5$, solve the equation in the interval $[0,2 \pi)$
3. $\sqrt{2} \cos ^{2} x-\cos x=0$
4. $3-2 \cos ^{2} t=3 \sin t$
5. $\cos 3 x-2 \sin x=0 \quad$ Hint: start by expanding $\cos (2 x+x)$
6. Show how to use the half angle formula to find $\sin \frac{13 \pi}{12}$.
7. Find $\cos (2 \theta), \sin (2 \theta)$ and $\tan (2 \theta)$ given that $\cos (\theta)=-\frac{4}{5}$ and x is in quadrant III.
8. Suppose the chord AB in a circle of radius r subtends central angle θ, as shown in the diagram at right. Show that the length of AB is $2 r \sin \frac{\theta}{2}$.

9. Find the exact value of $\sin \left(\tan ^{-1}\left(-\frac{24}{7}\right)\right)$ and write it in simplest radical form.
10. Factor $8 \sin ^{4} x-10 \sin ^{2} x+3$ and find all solutions to the equation $8 \sin ^{4} x-10 \sin ^{2} x+3=0$.
11. Use the sum to product identity to find all solutions to $\cos x+\sin 3 x=0$ (do not approximate.)
12. Find all solutions to $\sin ^{3} 4 x-2 \cos 4 x=0$.

Math 12 - Precalculus - Chapter 11 test Solutions.

In $1-2$, verify the identity.

1. $\frac{1}{1-\cos \theta}-\frac{1}{1+\cos \theta}=2 \csc \theta \cot \theta$

SOLN: (in the form of a sequence of equivalent equations, the last of which is an obvious identity)

$$
\begin{aligned}
\frac{1}{1-\cos \theta}-\frac{1}{1+\cos \theta} & =2 \csc \theta \cot \theta \\
\frac{1+\cos \theta}{1-\cos ^{2} \theta}-\frac{1-\cos \theta}{1-\cos ^{2} \theta} & =2 \frac{\cos \theta}{\sin ^{2} \theta} \\
\frac{2 \cos \theta}{1-\cos ^{2} \theta} & =\frac{2 \cos \theta}{1-\cos ^{2} \theta}
\end{aligned}
$$

2. $\sin x+\sqrt{3} \cos x=2 \sin \left(x-\frac{\pi}{6}\right) \mathrm{t}$

SOLN: Well, this is embarrassing. Start with the RHS and you have
$2 \sin \left(x-\frac{\pi}{6}\right)=2\left(\cos \frac{\pi}{6} \sin x-\sin \frac{\pi}{6} \cos x\right)=\sqrt{3} \sin x-\cos x$
$\neq \sin x+\sqrt{3} \cos x=2\left(\cos \frac{\pi}{3} \sin x+\sin \frac{\pi}{3} \cos x\right)=2 \sin \left(x+\frac{\pi}{3}\right)$
In $3-5$, solve the equation in the interval $[0,2 \pi)$
3. $\sqrt{2} \cos ^{2} x-\cos x=0$

SOLN: $\sqrt{2} \cos ^{2} x-\cos x=\cos x(\sqrt{2} \cos x-1)=0 \Leftrightarrow \cos x=0$ or $\cos x=\frac{\sqrt{2}}{2}$
Thus the solutions are $x \in\left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{4}\right\}$
4. $3-2 \cos ^{2} t=3 \sin t$

SOLN:
$3-2 \cos ^{2} t=3 \sin t \Leftrightarrow 3-2\left(1-\sin ^{2} t\right)=3 \sin t \Leftrightarrow 2 \sin ^{2} t-3 \sin t+1=0 \Leftrightarrow(2 \sin t-1)(\sin t-1)=0$
Which is equivalent to either $\sin t=\frac{1}{2}$ or $\sin t=1$ so the solutions are $t \in\left\{\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}\right\}$
5. $\cos 3 x-2 \sin x=0 \quad$ Hint: start by expanding $\cos (2 x+x)$

SOLN: (full disclosure: I had meant to have $\sin 3 x-2 \sin x=0$ which would lead to the following $\sin 3 x-2 \sin x=0 \Leftrightarrow \sin x \cos 2 x+\sin 2 x \cos x-2 \sin x=\left(1-2 \sin ^{2} x\right) \sin x+2 \sin x \cos ^{2} x=0$
So, factoring out $\sin x$ and using the Pythagorean identity:
$\left(2 \cos ^{2} x+1-2 \sin ^{2} x\right) \sin x=0 \Leftrightarrow\left(4 \cos ^{2} x-1\right) \sin x=0$ which is true iff $\sin x=0$ or $\cos x= \pm \frac{1}{2}$ so the solution set is $x \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi\right\}$ Nice and simple, huh? Here's the solution to the problem posed:

$$
\begin{aligned}
\cos 3 x-2 \sin x & =\cos (2 x+x)-2 \sin x=\cos 2 x \cos x-\sin 2 x \sin x-2 \sin x \\
& \Leftrightarrow\left(2 \cos ^{2} x-1\right) \cos x-2 \sin ^{2} x \cos x=2 \sin x \\
& \Leftrightarrow 2 \cos ^{3} x-\cos x-2\left(1-\cos ^{2} x\right) \cos x=2 \sin x \\
& \Leftrightarrow 4 \cos ^{3} x-3 \cos x=2 \sin x \\
& \Rightarrow\left(4 \cos ^{3} x-3 \cos x\right)^{2}=4 \sin ^{2} x \\
& \Leftrightarrow 16 \cos ^{6} x-24 \cos ^{4} x+13 \cos ^{2} x-4=0 \\
& \Leftrightarrow p(u)=16 u^{3}-24 u^{2}+13 u-4=0
\end{aligned}
$$

6. This last polynomial has no negative roots (Descartes' rule of signs) and 3 or 1 positive roots. Now $p(0)=-4$ and $p(u)=(u-$ 1) $\left(16 u^{2}-8 u+5\right)+1$ so $p(1)=1$ indicates (intermediate value theorem) there's a zero between $u=0$ and $u=1$, probably closer to 1 .
$p(u)=(u-0.9)\left(16 u^{2}-9.6 u+4.36\right)-0.076$ so let's take 0.91 as an approximation to the zero there. Then

$u=\cos ^{2} x \approx 0.91 \Leftrightarrow \cos x \approx \pm 0.95 \Leftrightarrow x \approx \pm \arccos (0.95)+k \pi, k \in \mathbb{Z}$. But, in solving the equation, we equated square, which can bring in an extraneous solution. At this stage, work become much easier with a calculator. For instance, $\operatorname{arcos}(0.95)$ is near 0.32 , is not easily computed by hand at this stage. $\pi-0.32$ is approximately -2.83 and is also a solution. So the solutions seem to be good, as the graph shows.
7. Show how to use the half angle formula to find $\sin \frac{13 \pi}{12}$.

SOLN: $\sin \frac{13 \pi}{12}=-\sqrt{\frac{1-\cos (13 \pi / 6)}{2}}=-\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}=-\frac{\sqrt{2-\sqrt{3}}}{2}$
8. Find $\cos (2 \theta), \sin (2 \theta)$ and $\tan (2 \theta)$ given that $\cos (\theta)=-\frac{4}{5}$ and θ is in quadrant III.

SOLN: $\cos (2 \theta)=2 \cos ^{2} \theta-1=2\left(\frac{16}{25}\right)-1=\frac{7}{25}$
Since $\pi \leq \theta \leq 3 \pi / 2,2 \pi \leq 2 \theta \leq 3 \pi$ where sine is positive.
Thus $\sin (2 \theta)=\sqrt{1-\left(\frac{7}{25}\right)^{2}}=\sqrt{1-\frac{49}{625}}=\sqrt{\frac{576}{625}}=\frac{24}{25}$
The tangent function is then easy to figure as $\sin 2 \theta / \cos 2 \theta=24 / 7$.
9. Suppose the chord AB in a circle of radius r subtends central angle θ, as shown in the diagram at right. Show that the length of AB is $2 r \sin \frac{\theta}{2}$.
SOLN: Construct perpendicular bisector of AB and observe that this will pass through the circle center. Then $\sin (\theta / 2)=B C / r$ meaning that $A B=2 B C=2 r \sin (\theta / 2)$.

10. Find the exact value of $\sin \left(\tan ^{-1}\left(-\frac{24}{7}\right)\right)$ and write it in simplest radical form. SOLN: $\tan ^{-1}\left(-\frac{24}{7}\right)=-\tan ^{-1}\left(\frac{24}{7}\right)$. Recall that $7,24,25$ is a Pythagorean triple, so $\sin \left(\tan ^{-1}\left(-\frac{24}{7}\right)\right)=-\frac{24}{25}$
11. Factor $8 \sin ^{4} x-10 \sin ^{2} x+3$ and find all solutions to the equation $8 \sin ^{4} x-10 \sin ^{2} x+3=0$.

$$
8 \sin ^{4} x-10 \sin ^{2} x+3=8 \sin ^{4} x-6 \sin ^{2} x-4 \sin ^{2} x+3=2 \sin ^{2} x\left(4 \sin ^{2} x-3\right)-1\left(4 \sin ^{2} x-3\right)
$$

SOLN:

$$
=\left(2 \sin ^{2} x-1\right)\left(4 \sin ^{2} x-3\right)=0 \Leftrightarrow \sin x= \pm \frac{\sqrt{2}}{2} \text { or } \sin x= \pm \frac{\sqrt{3}}{2}
$$

Thus all solutions are of the form $\frac{\pi}{4}+\frac{k \pi}{2}, \frac{\pi}{3}+k \pi$ or $\frac{2 \pi}{3}+k \pi$
12. Use the sum to product identity to find all solutions to $\cos x+\sin 3 x=0$ (do not approximate.)
$\cos x+\sin 3 x=\sin \left(\frac{\pi}{2}-x\right)+\sin 3 x=2 \sin \left(\frac{\frac{\pi}{2}-x+3 x}{2}\right) \cos \left(\frac{\frac{\pi}{2}-x-3 x}{2}\right)$

$$
=2 \sin \left(\frac{\pi}{4}+x\right) \cos \left(\frac{\pi}{4}-2 x\right)=0
$$

So either $\sin \left(\frac{\pi}{4}+x\right)=0 \Leftrightarrow \frac{\pi}{4}+x=k \pi \Leftrightarrow x=-\frac{\pi}{4}+k \pi$ or
$\cos \left(\frac{\pi}{4}-2 x\right)=0 \Leftrightarrow \frac{\pi}{4}-2 x=\frac{(2 k+1) \pi}{2} \Leftrightarrow x=\frac{\pi}{8}-\frac{(2 k+1) \pi}{4}$
13. Find all solutions to $\sin ^{3} 4 x-2 \cos 4 x=0$.

SOLN: (full disclosure: I had meant this to be $\sin ^{3} 4 x-2 \sin 4 x=0$)
$\sin ^{3} 4 x-2 \cos 4 x=0 \Rightarrow \sin ^{6} 4 x=(2 \cos 4 x)^{2} \Leftrightarrow \sin ^{6} 4 x=4\left(1-\sin ^{2} 4 x\right) \Leftrightarrow \sin ^{6} 4 x+4 \sin ^{2} 4 x-4=0$
Let $u=\sin ^{2} 4 x$ so the equation is cubic in u : $f(u)=u^{3}+4 u-4=0$. Now the possible rational zeros for
this cubic are in the set $\pm\{1,2,4\}$ and since $f(0) f(1)<0$, by the Intermediate Value theorem there is a zero between u $=0$ and $u=1 . f(u)=(u-1)\left(u^{2}+u+5\right)+1$ so 1 is an upper bound on the zeros of f. Thus f has at least one irrational zero in $(0,1)$. We can use synthetic division to approximate a decimal approximation for the zero of the cubic. As shown at right, the best you can reasonably

0	1	0	4	-4
1	1	1	5	1
0.9	1	0.9	4.81	0.329
0.8	1	0.8	4.64	-0.288
0.85	1	0.85	4.7225	0.014125

$4 x= \pm \arcsin (0.92)+2 k \pi$ or $4 x=\pi \pm \arcsin (0.92)+2 k \pi$, and solving for x we get
$x=\frac{ \pm \arcsin (0.92)}{4}+\frac{k \pi}{2}$ or $x=\frac{\pi \pm \arcsin (0.92)}{4}+\frac{k \pi}{2}$
However, arriving at these solutions involved equating the square of the LHS with the square of the RHS, which can lead to extraneous solutions. There's probably a clever way to check which solutions are valid without a calculator, but I'm going to go rogue and pull out the machine.

Now $\arcsin (0.92) / 4$ is approximately 0.292 and qualifies as a solution, but evidently its negation does not. However, $\arcsin (0.92) / 4-\pi / 4$ is approximately -0.493 , so it looks like the solutions are near either 0.292 plus any integer multiple of $\pi / 2$ or -0.493 plus any integer multiple of $\pi / 2$.

