Math 12 - Precalculus - Exponential and Logarithm Functions Test - Fall '09 NAME \qquad
Write all responses on separate paper. Show all work for credit. You will need a scientific calculator.

1. Rewrite the equation $3.98+10^{1-x / 2}=10$ in equivalent logarithmic form, then solve for x. Use a calculator to approximate x to the nearest ten thousandth.
2. Rewrite the equation $8-4 \log (x-2)=6.09$ in equivalent exponential form, then solve for x. Use a calculator to approximate x to the nearest ten thousandth.
3. Solve the equation for x. Approximate to the nearest thousandth.
a. $10^{x}=6.67259 \times 10^{-11}$
b. $1.01^{x / 24}=7$
4. Use properties of logarithms to solve the equation. Approximate to 4 digits if appropriate.
a. $\quad \log _{2}(x)+\log _{2}(44-3 x)=7$
b. $\quad \log \left(\frac{10}{9 x^{2}}\right)+\log (1)=0.5$
5. Given $f(x)=1+1.322^{x}$.
a. Find a formula for the inverse function, $y=f^{-1}(x)$.
b. Find the intercept and asymptote of $f(x)$.
c. Find the intercept and asymptote of $f^{-1}(x)$.
d. Complete the table

x	-2	0	2	4	6	8	10
$f(x)$							

6. Suppose the Gorkon population on planet Xorda in April of 1999 was 1380, and it is estimated that the population will increase by 2% every 400 years.
a. Assuming a natural growth model for the Gorkons, when will its population have grown to 2000 ?
b. By what percentage will the population grow in 1800 years?
7. If $\$ 300$ is invested at 3.65% annual interest rate compounded daily, how long will it take to reach a value of $\$ 500$?
8. Actinium has a half life of about 7.04×10^{8} years. How long will it take a 1 gram sample to decay to one milligram (one thousandth of a gram).
9. Find an exponential function (of the form $f(x)=a \cdot b^{x}$) which passes through the points $(2,5)$ and $(5,8)$. What is the value of $f(8)$?
10. Rewrite the equation $3.98+10^{1-x / 2}=10$ in equivalent logarithmic form, then solve for x. Use a calculator to approximate x to the nearest ten thousandth.

SOLN:

$$
3.98+10^{1-x / 2}=10 \Leftrightarrow 10^{1-x / 2}=6.02 \Leftrightarrow 1-x / 2=\log (6.02) \Leftrightarrow x=2(1-\log (6.02))
$$

$$
x \approx 2(1-0.77960)=2(0.22040) \approx 0.4408
$$

2. Rewrite the equation $8-4 \log (x-2)=6.09$ in equivalent exponential form, then solve for x.

Use a calculator to approximate x to the nearest ten thousandth.
SOLN:

$$
\begin{aligned}
8-4 \log (x-2) & =6.09 \Leftrightarrow-4 \log (x-2)=-1.91 \Leftrightarrow \log (x-2)=0.4775 \Leftrightarrow x-2=10^{0.4775} \approx 3.00262 \\
x & \approx 5.0026
\end{aligned}
$$

3. Solve the equation for x. Approximate to 4 digits, if appropriate.
a. $\quad 10^{x}=6.67259 \times 10^{-11}$

SOLN: $x=\log (6.67259)-11 \approx 0.824294-11=-10.175706$
b. $\quad 1.01^{\chi / 24}=7$

SOLN: $1.01^{x / 24}=7 \Leftrightarrow \ln \left(1.01^{x / 24}\right)=\ln 7 \Leftrightarrow \frac{x}{24} \ln (1.01)=\ln 7 \Leftrightarrow x=\frac{24 \ln 7}{\ln (1.01)} \approx 4693$
4. Use properties of logarithms to solve the equation. Approximate to 4 digits if appropriate.
a. $\quad \log _{2}(x)+\log _{2}(44-3 x)=7$

$$
\log _{2}(x)+\log _{2}(44-3 x)=7 \Rightarrow \log _{2}(x(44-3 x))=7 \Leftrightarrow-3 x^{2}+44 x=128
$$

SOLN:

$$
\Leftrightarrow 3 x^{2}-44 x-128=0 \Leftrightarrow(3 x-32)(x-4)=0 \Leftrightarrow x=\frac{32}{3} \text { or } x=4
$$

b. $\quad \log \left(\frac{10}{9 x^{2}}\right)+\log (1)=0.5 \quad$ SOLN:

$$
\log \left(\frac{10}{9 x^{2}}\right)+\log (1)=0.5 \Leftrightarrow \log 10-\log 9 x^{2}+0=0.5 \Leftrightarrow \log 9 x^{2}=\frac{1}{2} \Leftrightarrow 9 x^{2}=\sqrt{10} \Leftrightarrow x=\frac{ \pm 10^{1 / 4}}{3}
$$

5. Given $f(x)=1+1.322^{x}$.
a. Find a formula for the inverse function, $y=f^{-1}(x)$.

$$
\begin{aligned}
& \text { SOLN }: y=1+1.322^{x} \Leftrightarrow 1.322^{x}=y-1 \Leftrightarrow \log \left(1.322^{x}\right)=\log (y-1) \Leftrightarrow x \log 1.322=\log (y-1) \\
& x=\frac{\log (y-1)}{\log (1.322)} \approx 8.2487 \log (y-1) \Leftrightarrow f^{-1}(x)=8.2487 \log (x-1)
\end{aligned}
$$

b. Find the intercept and asymptote of $f(x)$.

SOLN: The graph of $y=f(x)$ rises from a horizontal asymptote $y=1$ through the y-intercept at $(0,2)$.
c. Find the intercept and asymptote of $f^{-1}(x)$.

SOLN: The graph of $y=f^{-1}(x)$ rises along a vertical asymptote $x=1$ through the x-intercept at $(2,0)$.
d. ANS: Completing the table we have

x	-2	0	2	4	6	8	10
$f(x)$	1.57	2	2.75	4.05	6.34	10.3	17.3

and thus a graphing showing $y=f(x)$ and $y=f^{-1}(x)$ together illustrates the symmetry through $y=x$:

6. Suppose the Gorkon population on planet Xorda in April of 1999 was 1380, and it is estimated that the population will increase by 2% every 400 years.
a. Assuming a natural growth model for the Gorkons, when will its population have grown to 2000? SOLN: According to the natural growth model, the population t years from April of 1999 will be $P(t)=1380(1.02)^{t / 400} \approx 1380 e^{0.00004951 t}$. Setting either of these to 2000 and solving for t we have $(1.02)^{t / 400}=\frac{200}{138} \Leftrightarrow \frac{t}{400} \ln (1.02)=\ln \left(\frac{100}{69}\right) \Leftrightarrow t=400\left(\frac{\ln 100-\ln 69}{\ln 1.02}\right) \approx 7495.24$ Add this to the base year and you've got about 1999+7495 = 9494 and a quarter year from April is July.
b. By what percentage will the population grow in 1800 years?

SOLN: $P(1800)=1380(1.02)^{9 / 2} \approx 1380(1.0932)$, so the population will grow 9.32%
7. If $\$ 300$ is invested at 3.65% annual interest rate compounded daily, how long will it take to reach a value of $\$ 500$?
SOLN:
$300\left(1+\frac{0.0365}{365}\right)^{365 t}=500 \Leftrightarrow(1.0001)^{365 t}=5 / 3 \Leftrightarrow 365 t=\frac{\ln 5-\ln 3}{\ln 1.0001} \Leftrightarrow t=\frac{\ln 5-\ln 3}{365 \ln 1.0001} \approx 13.996 \mathrm{yrs}$
Note that the continuous compounding model yields an extremely close result:
$300 e^{0.0365 t}=500 \Leftrightarrow e^{0.0365 t}=5 / 3 \Leftrightarrow 0.0365 t=\ln (5 / 3) \Leftrightarrow t=\ln (5 / 3) / 0.0365 \approx 13.995$
8. Actinium has a half life of about 7.04×10^{8} years. How long will it take a 1 gram sample to decay to one milligram (one thousandth of a gram).
SOLN: If 1 gram of Actinium is present at $t=0$, then the amount which remains at time t (in years) then solve
$A(t)=(0.5)^{t / 7.04 \times 10^{8}}=0.001 \Leftrightarrow t=7.04 \times 10^{8} \ln (0.001) / \ln (0.5) \approx 7.016 \times 10^{9}$
9. Find an exponential function (of the form $f(x)=a \cdot b^{x}$) which passes through the points $(2,5)$ and $(5,8)$. What is the value of $f(8)$?
SOLN: $a \cdot b^{2}=5$ and $a \cdot b^{5}=8$ so $\frac{a \cdot b^{5}}{a \cdot b^{2}}=\frac{8}{5} \Leftrightarrow b^{3}=\frac{8}{5}=1.6 \Leftrightarrow b=\sqrt[3]{1.6}$ whence
$a \cdot \sqrt[3]{1.6^{2}}=5 \Leftrightarrow a=\frac{5}{\sqrt[3]{2.56}}$ and $f(8)=\frac{5}{\sqrt[3]{1.6^{2}}} \cdot \sqrt[3]{1.6}^{8}=5 \sqrt[3]{1.6}^{6}=5(2.56)=12.8$
The simpler way to get this here is to note that the x increments from 2 to 5 and then to 8 are the same, so we can apply the same growth multiplier: $8=5^{*}(8 / 5)$ and so $12.8=8^{*}(8 / 5)$.
10. A potato is heated to $165^{\circ} \mathrm{C}$ and thrown into a huge bucket of ice water $\left(0^{\circ} \mathrm{C}\right)$ so that two minutes later, its temperature is $100^{\circ} \mathrm{C}$. How long will it take to cool to $10^{\circ} \mathrm{C}$?
SOLN: Since the ice water temperature is 0 , Newton's law of cooling reduces to simple exponential decay: $T(t)=165 e^{-k t}$. Find k by plugging in the known values:
$T(2)=165 e^{-2 k}=100 \Leftrightarrow k=-\ln (20 / 33) / 2 \approx 0.25039$ To find when the potato temperature is $10^{\circ} \mathrm{C}$,
solve $165 \exp (\ln (20 / 33) t / 2)=10 \Leftrightarrow \ln (20 / 33) t / 2=\ln (2 / 33) \Leftrightarrow t=2 \ln (2 / 33) / \ln (20 / 33) \approx 11.2$ minutes.

