Math 12 - Chapter 8 Test - spring '09
Name
Write all responses on separate paper. Show your work for credit.

1. Graph the polynomial $p(x)=-\left(x^{2}-4\right)\left(x^{2}-9\right)$ showing clearly all x and y intercepts and the end behavior.
2. Use synthetic division to show that 7 and -2 are both roots of $x^{4}-6 x^{3}-11 x^{2}+24 x+28$
3. Let $p(x)=12 x^{4}-3 x^{3}-19 x^{2}+x+5$
a. List all possible rational roots according tot the theorem on rational roots.
b. Explain why there must be a zero between $x=0$ and $x=1$.
c. Show that $x=-1$ and $x=5 / 4$ are zeros
d. Find the other 2 zeros.
4. Let $p(x)=(x-1)^{2}(2 x+5)(2 x-5)$. Sketch a graph of $p(x)$ showing its behavior near its zeros and its end behavior.
5. Find a polynomial with integer coefficients and zeros at $x=1.5, x=1+\sqrt{2}$ and $x=1+3 i$.

Write the polynomial in descending powers form.
6. Let $p(x)=36 x^{4}-60 x^{3}-47 x^{2}+60 x+16$.
a. What does Descartes’ Rule of Signs say about the number of positive zeros and the number of negative zeros?
b. Show that $x=3$ is an upper bound on the real zeros of p.
7. Consider the rational function $f(x)=\frac{(2 x-1)(x+2)}{(3 x-2)(2 x+3)}$
a. Find all intercepts.
b. Find all vertical asymptotes.
c. Find an equation for the horizontal asymptote.
d. Make a table of at least 6 points on the graph and construct a graph showing the asymptotes and intercepts.
8. Find a rational function with a horizontal asymptote along $y=2$, x-intercepts at $(-3,0)$ and $(2,0)$ and no vertical asymptotes.

1. Graph the polynomial $p(x)=-\left(x^{2}-4\right)\left(x^{2}-9\right)$ showing clearly all x and y intercepts and the end behavior.

2. Use synthetic division to show that 7 and -2 are both roots of $x^{4}-6 x^{3}-11 x^{2}+24 x+28$

IN					OUT
0	1	-6	-11	24	28
7	1	1	-4	-4	0
SOLN:					

Further, it's important to be able to interpret these results:

$$
\begin{aligned}
x^{4}-6 x^{3}-11 x^{2}+24 x+28 & =(x-7)\left(x^{3}+x^{2}-4 x-4\right) \\
& =(x+2)\left(x^{3}-8 x^{2}+5 x-14\right)
\end{aligned}
$$

you were to divide the quotient by $x+2$ the second time, you'd get

$x^{4}-6 x^{3}-11 x^{2}+24 x+28=(x-7)(x+2)\left(x^{2}-x-2\right)=(x-7)\left(x^{2}-4\right)(x+1)$
whose graph is a less symmetric and upwards opening W -shape:
3. Let $p(x)=12 x^{4}-3 x^{3}-19 x^{2}+x+5$
a. List all possible rational roots according tot the theorem on rational roots.

SOLN: The rational zeros must be contained in $\left\{ \pm x \left\lvert\, x \in\left\{1,5, \frac{1}{2}, \frac{5}{2}, \frac{1}{3}, \frac{5}{3}, \frac{1}{4}, \frac{5}{4}, \frac{1}{6}, \frac{5}{6}, \frac{1}{12}, \frac{5}{12}\right\}\right.\right\}$
b. Explain why there must be a zero between $x=0$ and $x=1$.

SOLN: $p(0)=5$ and $p(1)=12-3-19+1+5=-4$ have opposite signs so, by the intermediate value theorem, there must be zero between $x=0$ and $x=1$.
c. Show that $x=-1$ and $x=5 / 4$ are zeros

IN					
0	12	-3	-19	1	5
-1	12	-15	-4	5	0
$5 / 4$	12	0	-4	0	

d. Find the other 2 zeros.

SOLN: As we can see from the above division:

$$
\begin{aligned}
p(x) & =\left(12 x^{2}-4\right)\left(x-\frac{5}{4}\right)(x+1) \\
& =\left(3 x^{2}-1\right)(4 x-5)(x+1)
\end{aligned}
$$

thus the other two zeros are zeros of $3 x^{2}-1=0 \Leftrightarrow x= \pm \frac{1}{\sqrt{3}}= \pm \frac{\sqrt{3}}{3}$
4. Let $p(x)=(x-1)^{2}(2 x+5)(2 x-5)$. Sketch a graph of $p(x)$ showing its behavior near its zeros and its end behavior.

5. Find a polynomial with integer coefficients and zeros at $x=1.5, x=1+\sqrt{2}$ and $x=1+3 i$. Write the polynomial in descending powers form.
SOLN: By the theorem of conjugates, the polynomial also has zeros at $1-\sqrt{2}$ and $1-3 \mathrm{i}$ Using the factor theorem we can then write, regroup and use diff. of squares to expand:

$$
\begin{aligned}
& (2 x-3)[x-(1+\sqrt{2})][x-(1-\sqrt{2})][x-(1+3 i)][x-(1-3 i)] \\
& =(2 x-3)[(x-1)-\sqrt{2}][(x-1)+\sqrt{2}][(x-1)-3 i][(x-1)+3 i] \\
& =(2 x-3)\left[(x-1)^{2}-2\right]\left[(x-1)^{2}+9\right]=(2 x-3)\left(x^{2}-2 x-1\right)\left(x^{2}-2 x+10\right) \\
& =(2 x-3)\left(x^{4}-4 x^{3}+13 x^{2}-18 x-10\right)=2 x^{5}-11 x^{4}+38 x^{3}-75 x^{2}+34 x+30
\end{aligned}
$$

Note the small sketch to the upper right shows the three real zeros, but not the complex zeros.
6. Let $p(x)=36 x^{4}-60 x^{3}-47 x^{2}+60 x+16$.
a. What does Descartes' Rule of Signs say about the number of positive zeros and the number of negative zeros?

SOLN: There are two sign changes in the coefficients as read in order descending powers, therefore there are either 2 positive zeros or none.
$p(-x)=36 x^{4}+60 x^{3}-47 x^{2}-60 x+16$ also has two sign changes in the coefficients so there are also either 2 negative zeros or none.
b. Show that $x=3$ is an upper bound on the real zeros of p.

SOLN: $p(x)=(x-3)\left(36 x^{3}+48 x^{2}+97 x+351\right)+1069$ so that if $x>3$ then $p(x)$ is a sum of two positive numbers, which can't be zero.
7. Consider the rational function $f(x)=\frac{(2 x-1)(x+2)}{(3 x-2)(2 x+3)}$
a. Find all intercepts.

SOLN: The intercepts are
$(-2,0),\left(0, \frac{1}{3}\right),\left(\frac{1}{2}, 0\right)$
b. Find all vertical asymptotes.

SOLN: The vertical asymptotes are along $x=2 / 3$ and $x=-3 / 2$.
c. Find an equation for the horizontal asymptote.
SOLN: As $|x| \rightarrow \infty, y$ approaches the line $y=1 / 3$.
d. Make a table of at least 6 points on the graph and construct a graph showing the asymptotes and intercepts.

x	$-5 / 2$	$-7 / 4$	-1	0	$6 / 10$	$7 / 10$
y	$3 / 19$	$-9 / 29$	$3 / 5$	$1 / 3$	$-13 / 21$	$27 / 11$

8. Find a rational function with a horizontal asymptote along $y=2$, x-intercepts at $(-3,0)$ and $(2,0)$ and no vertical asymptotes.
SOLN: $\frac{2(x+3)(x-2)}{x^{2}+1}$ will do it.

