Math 12 - Chapter 3 Test Solutions - Spring '05

1. Consider the polynomial function $f(x)=3 x^{4}+2 x^{3}+3 x^{2}-4 x-4$.
a. Describe how does the leading term determines the long-term behavior of this function; that is, what happens as $|x| \rightarrow \infty$.
ANS: Since the leading coefficient is positive and the degree is even, as $|x| \rightarrow \infty, y \rightarrow \infty$.
b. Evaluate $f(1)$ and use the result to find a factor of $f(x)$.

ANS: $f(1)=0$, so, by the factor theorem, we know $x-1$ is a factor.
c. Use synthetic division to divide $f(x)$ by $x-1$ and relate dividend, divisor, quotient and remainder in an equation.

ANS: The division algorithm finds the other factor to be such that | 1 | 3 | 2 | 3 | -4 | -4 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 3 | 5 | 8 | 4 | |
| | | | 3 | 5 | 8 | 4 |

$f(x)=(x-1)\left(3 x^{3}+5 x^{2}+8 x+4\right)$
d. Compare the values of $f(-1)$ and $f(0)$ and use the intermediate value theorem to draw a conclusion about the location of a zero for $f(x)$.
ANS: $f(-1)=4$ and $f(0)=-4$, so, by the intermediate value theorem, there is zero between $x=0$ and $x=1$.
e. State why the condition for the theorem on rational zeros is satisfied and use the theorem on rational zeros to list possible rational zeros for $f(x)$.
ANS: Since the coefficients are all integers, the condition for the theorem on rational zeros is met. Therefore the rational zeros must be in $\pm\left\{1,2,4, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}\right\}$.
f. Use synthetic division to divide $f(x)$ by $x+2 / 3$ and relate dividend, divisor, quotient and remainder in an equation.

ANS: | $-2 / 3$ | 3 | 2 | 3 | -4 | -4 |
| :--- | :--- | ---: | :--- | :--- | :--- |
| | | -2 | 0 | -2 | 4 |
| | 3 | 0 | 3 | -6 | 0 | So that $f(x)=\left(x-\frac{2}{3}\right)\left(3 x^{3}+3 x-6\right)=(3 x-2)\left(x^{3}+x-2\right)$.

g. Use long division to divide $f(x)$ by $x^{2}+x+2$ and relate dividend, divisor, quotient and remainder in an equation.
ANS:

$$
\begin{aligned}
& x ^ { 2 } + x + 2 \longdiv { 3 x ^ { 2 } - x - 2 } \begin{array} { r }
{ 3 x ^ { 4 } + 2 x ^ { 3 } + 3 x ^ { 2 } - 4 x - 4 }
\end{array} \\
& \frac{-\left(3 x^{4}+3 x^{3}+6 x^{2}\right)}{-x^{3}-3 x^{2}-4 x} \\
& -\left(-x^{3}-x^{2}-2 x\right) \\
& -2 x^{2}-2 x-4 \\
& \frac{-\left(-2 x^{2}-2 x-4\right)}{0}
\end{aligned}
$$

h. Find the complex conjugate zeros of $x^{2}+x+2$.

ANS: $x^{2}+x+2=\left(x+\frac{1}{2}\right)^{2}+\frac{7}{4}=0 \Leftrightarrow x=-\frac{1}{2} \pm \frac{\sqrt{7} i}{2}$
i. Write $f(x)=3 x^{4}+2 x^{3}+3 x^{2}-4 x-4$ in completely factored form.

ANS: $f(x)=(x-1)(3 x+2)\left(x^{2}+2 x+2\right)=(x-1)(3 x+2)\left(x+\frac{1}{2}-\frac{\sqrt{7} i}{2}\right)\left(x+\frac{1}{2}+\frac{\sqrt{7} i}{2}\right)$
j. Sketch a graph of $f(x)=3 x^{4}+2 x^{3}+3 x^{2}-4 x-4$ showing how it passes through its intercepts and the coordinates of all local or global extrema.
ANS:

2. Explain why $p(x)=(x-5)\left(x^{5}+x^{3}+1\right)+1$ can have no zeros greater than 5 .

ANS: If $x>5$ then $x-5>0, x^{5}+x^{3}+1>0$ so that $p(x)>1$ and is therefore not 0 .
3. Find a polynomial function with integer coefficients and zeros at $x=\frac{2}{3}, \sqrt{2} i$.

ANS: Using the factor theorem and the conjugate roots theorem we have

$$
p(x)=(3 x-2)(x-\sqrt{2} i)(x+\sqrt{2} i)=(3 x-2)\left(x^{2}+2\right)=3 x^{3}-2 x^{2}+6 x-4
$$

4. Find a formula for the $6^{\text {th }}$ degree polynomial whose graph is shown. Hint: it passes through $(1,-1)$ and the leading coefficient is less than 1.

ANS: There is a root of multiplicity 2 at $x=-2$, another root at $x=0$ and a root of multiplicity 3 at $x=1.5$, meaning that, by the factor theorem, $p(x)=a x(x+2)^{2}(2 x-3)^{3}$.
To determine a, require that $p(1)=-1$, so that $-9 \mathrm{a}=-1$.
Thus $p(x)=\frac{1}{9} x(x+2)^{2}(2 x-3)^{3}$

$$
=\frac{8}{9} x(x+2)^{2}\left(x-\frac{3}{2}\right)^{3}
$$

5. Sketch graphs for each of the following showing all intercepts, asymptotes and additional points, as necessary to get the shape.
a. $y=\frac{x^{2}-9}{x\left(x^{2}-1\right)}$

ANS: There are intercepts at $(-3,0)$ and (3,0). The vertical asymptotes are along $x=-1, x=0$ and $x=1$. Since the degree of the numerator is less than the degree of the denominator, $y=0$ is a horizontal asymptote. We plot a few additional points to flesh out the plot:

x	-4	-3	-2	$-1 / 2$	$1 / 2$	2	3	4
y	$\frac{-7}{60} \approx-0.12$	0	$\frac{5}{6} \approx 0.83$	$-23 \frac{1}{3}$	$23 \frac{1}{3}$	$-\frac{5}{6} \approx-0.83$	0	$\frac{7}{60} \approx 0.12$

b. $y=\frac{\left(x^{2}-4\right)\left(2 x^{2}-1\right)}{(x-1)^{2}\left(x^{2}+x+1\right)}$

ANS: Intercepts at $(-2,0),(2,0),\left(\pm \frac{\sqrt{2}}{2}, 0\right)$ and (0,4). Vertical asymptote along $x=1$ and a horizontal asymptote along $y=2$. We tabulate additional points to flesh out the plot:

x	-8	-2	-1	-.71	0	0.5	.71	2	4	8
y	1.65	0	0.75	0	4	4.3	0	0	2.0	2.1

