Math 12 - Chapter 10 Test - Spring '09
Name $\qquad$
Write all responses on separate paper. Show your work for credit.

1. For each, find an equation for the exponential function of the form $f(x)=c+a \cdot b^{x}$ whose graph is shown. Approximate to the nearest tenth, as needed.
a.

b.


Hint: in the first the horizontal asymptote is $y=-1$ and in the second it appears that $f(-1)=3.5$
2. Suppose that you invest $\$ 15,000$ at $7 \%$ interest compounded monthly. How much money will be in your account in 4 years? Round your answer to the nearest cent.
3. Suppose that you invest $\$ 16,000$ at $4 \%$ interest compounded continuously. How much money will be in your account in 6 years? Round your answer to the nearest cent.
4. For each, find the exact value $f(b)$ of the given function $f$ at the given value $b$.
a. $f(x)=\log _{3}(x) ; b=\sqrt[5]{3}$
b. $\quad f(x)=\log _{5}(x) ; b=\frac{1}{25}$
5. For each, use a calculator to evaluate the function at given value $p$. Round your answer to the nearest hundredth.
a. $\quad F(x)=\ln (x) ; p=10.06$
b. $F(x)=\log (x) ; p=86.19$
6. For each, find an equation for the exponential function of the form $f(x)=\log _{b}(x-c)$ whose graph is shown. Approximate to the nearest tenth, as necessary.
a.

b.


Hint: in the first the vertical asymptote is $x=0$ and in the second it appears that $f(3)=-1$
7. Suppose that you invest $\$ 15,000$ at $9 \%$ interest compounded monthly. How much money will be in your account in 4 years? Round your answer to the nearest cent.
8. Use a calculator to evaluate the given function at the given value, round your answer to the nearest hundredth.
a. $\quad F(x)=\log _{4}(x) ; p=57.60$
b. $F(x)=\log _{8}(x) ; p=302.67$
9. Suppose that you invest $\$ 16,000$ at $2 \%$ interest compounded continuously. How many years will it take for your investment to reach $\$ 25,000$ ? Round your answer to the nearest hundredth.
10. Solve for $x: \log _{2}(x-2)+\log _{2}(3 x-8)=3$.
11. Solve for $t$ : $10\left(1+\frac{0.03}{24}\right)^{24 t}=20$. Approximate the solution to 4 digits.
12. Suppose that the population of a certain town grows at an annual rate of $3 \%$. If the population grows to 2,000 in 7 years, what was the original population? Round your answer to the nearest integer.
13. Suppose that a certain radioactive isotope has an annual decay rate of $18.6 \%$. If a particular sample decays to 41 grams after 3 years, how big (in grams) was the original sample? Round your answer to the nearest hundredth.
14. Find an exponential function of the form $P(t)=P_{0} e^{r t}$ which passes through the points $(0,7)$ and $(2,14)$.
15. Let $f(x)=4 \log _{2}(x-3)$. Find a formula for the inverse function and graph the function together with the inverse showing the symmetry through the line $y=x$.

## Math 12 - Chapter 10 Test Solutions - Spring ’09

1. For each, find an equation for the exponential function of the form $f(x)=c+a \cdot b^{x}$ whose graph is shown. Approximate to the nearest tenth, as needed.
a.

b.


SOLN: (a) Note that $c=-1$ is the horizontal asymptote and that $(1,0.5)$ is an approximate value on the curve. Assuming $a=1$, for simplicity, then we require $f(1)=-1+b=0.5 \Rightarrow b=1.5$ so that $f(x)=-1+1.5^{x}$. As a check, note that $f(4)=-1+1.5^{4}=4.0625$

SOLN (b) $f(-1)=3.5$ and the horizontal asymptote is $y=2$, so
$f(-1)=2+b^{-1}=3.5 \Leftrightarrow \frac{1}{b}=1.5 \Leftrightarrow b=\frac{2}{3}$, thus $f(x)=2+\left(\frac{2}{3}\right)^{x}$ does the trick. Note that $f(2)=2.4444 \ldots$
2. Suppose that you invest $\$ 15,000$ at $7 \%$ interest compounded monthly. How much money will be in your account in 4 years? Round your answer to the nearest cent.
SOLN: $15000\left(1+\frac{0.07}{12}\right)^{12(4)}=15000(1.0058 \overline{3})^{48} \approx 15000(1.32208387788) \approx \$ 19830.81$
3. Suppose that you invest $\$ 16,000$ at $4 \%$ interest compounded continuously. How much money will be in your account in 6 years? Round your answer to the nearest cent.
SOLN: $16000 e^{0.04(6)}=16000 e^{0.24} \approx 16000(1.27124915032) \approx \$ 20339.99$
4. For each, find the exact value $f(b)$ of the given function $f$ at the given value $b$.
a. $f(x)=\log _{3}(x) ; b=\sqrt[5]{3} \quad$ SOLN: $f(\sqrt[5]{3})=\log _{3}(\sqrt[5]{3})=\frac{1}{5}$
b. $\quad f(x)=\log _{5}(x) ; b=\frac{1}{25} \quad$ SOLN: $f\left(\frac{1}{25}\right)=\log _{5}\left(5^{-2}\right)=-2$
5. For each, use a calculator to evaluate the function at given value $p$. Round your answer to the nearest hundredth.
$\begin{array}{ll}\text { a. } \quad F(x)=\ln (x) ; p=10.06 & \text { SOLN: } F(10.06)=\ln (10.06) \approx 2.31 \\ \text { b. } \quad F(x)=\log (x) ; p=86.19 & \text { SOLN: } F(86.19)=\log (86.19) \approx 1.94\end{array}$
6. For each, find an equation for the exponential function of the form $f(x)=\log _{b}(x-c)$ whose graph is shown. Approximate to the nearest tenth, as necessary.
a.

b.


SOLN: (a) Since $x=0$ is the vertical asymptote and

$$
\log _{b}(1.5)=1 \Leftrightarrow b=1.5 \Rightarrow f(x)=\log _{1.5}(x)
$$

(b) Here $x=1$ is a vertical asymptote and it appears that

$$
f(3)=\log _{b}(3-1)=-1 \Leftrightarrow b^{-1}=2 \Leftrightarrow b^{-1}=\frac{1}{2} \text { so }
$$

$$
f(x)=\log _{0.5}(x-1)
$$

7. Suppose that you invest $\$ 15,000$ at $9 \%$ interest compounded monthly. How much money will be in your account in 4 years? Round your answer to the nearest cent.
SOLN: SOLN: $15000\left(1+\frac{0.09}{12}\right)^{12(4)}=15000(1.0075)^{48} \approx 15000(1.43140533331) \approx \$ 21471.08$
8. Use a calculator to evaluate the given function at the given value, round your answer to the nearest hundredth.
a. $\quad F(x)=\log _{4}(x) ; p=57.60 \quad$ SOLN: $F(57.60)=\log _{4}(57.60)=\frac{\ln (57.60)}{\ln 4} \approx \frac{4.0535225677}{1.38629436112} \approx 2.92$
b. $F(x)=\log _{8}(x) ; p=302.67$ SOLN: $F(302.67)=\log _{8}(302.67)$ is approximately 2.75
9. Suppose that you invest $\$ 16,000$ at $2 \%$ interest compounded continuously. How many years will it take for your investment to reach $\$ 25,000$ ? Round your answer to the nearest hundredth.
SOLN: $16000 e^{0.02 t}=25000$ is equivalent to
$\Leftrightarrow e^{0.02 t}=\frac{25}{16} \Leftrightarrow 0.02 t=\ln \left(\frac{25}{16}\right) \Leftrightarrow t=100 \ln \left(\frac{5}{4}\right) \approx 22.314$ years
10. Solve for $x: \log _{2}(x-2)+\log _{2}(3 x-8)=3$.

SOLN: $\log _{2}(x-2)(3 x-8)=3 \Leftrightarrow(x-2)(3 x-8)=2^{3} \Leftrightarrow 3 x^{2}-14 x+8=0 \Leftrightarrow(x-4)(3 x-2)=0$ so $x=4$ is the only solution, since the logarithms are not real-valued at $x=2 / 3$.
11. Solve for $t$ : $10\left(1+\frac{0.03}{24}\right)^{24 t}=20$. Approximate the solution to 4 digits.

SOLN: $(1.00125)^{24 t}=2 \Leftrightarrow t=\frac{\ln 2}{24 \ln (1.00125)} \approx 23.12$
12. Suppose that the population of a certain town grows at an annual rate of $3 \%$. If the population grows to 2,000 in 7 years, what was the original population? Round your answer to the nearest integer.
SOLN: $P(t)=P_{0} e^{0.03 t}$ is the model and $P(7)=P_{0} e^{0.21}=2000 \Leftrightarrow P_{0}=\frac{2000}{e^{0.21}} \approx 1621$
13. Suppose that a certain radioactive isotope has an annual decay rate of $18.6 \%$. If a particular sample decays to 41 grams after 3 years, how big (in grams) was the original sample? Round your answer to the nearest hundredth.
SOLN: $A(3)=A_{0} e^{-0.186(3)}=41 \Leftrightarrow A_{0}=\frac{41}{e^{-0.558}}=71.63$ grams to start with.
14. Find an exponential function of the form $P(t)=P_{0} e^{r t}$ which passes through the points $(0,7)$ and $(2,14)$.

SOLN: $P(0)=7 \Rightarrow P(2)=7 e^{2 r}=14 \Leftrightarrow e^{2 r}=2 \Leftrightarrow r=\frac{1}{2} \ln 2=\ln \sqrt{2}$ so

$$
P(t)=7 e^{t \ln \sqrt{2}}=7\left(e^{\ln \sqrt{2}}\right)^{t}=7(\sqrt{2})^{t}
$$

15. Let $f(x)=4 \log _{2}(x-3)$. Find a formula for the inverse function and graph the function together with the inverse showing the symmetry through the line $y=x$. SOLN:
$y=4 \log _{2}(x-3) \Leftrightarrow x-3=2^{y / 4} \Leftrightarrow$
$x=3+(\sqrt[4]{2})^{y} \Leftrightarrow f^{-1}(x)=3+(\sqrt[4]{2})^{x}$

