
COMPUTER
CORNER

EDITOR

Eugene A. Herman
Department of Mathematics
Grinnell College
Grinnell, IA 50112

In this column, readers are encouraged to share their expertise and experiences w ~ t h computers as
they relate to college-level mathematics Articles that illustrate how computers can be used to enhance
pedagogy, solve problems, and model real-life situations are especially welcome.

Classroom Computer Capsules features new examples of using the computer to enhance teaching.
These short articles demonstrate the use of readlly ava~lable computing resources to present or
elucidate famlllar toplcs in ways that can have an immediate and beneficial effect in the classroom

Send submissions for both columns to Eugene A. Herman

The Root-Finding Route to Chaos
Richard Parris

Richard Parris received his mathematics degrees from Tufts
University (B.A.) and Princeton University (Ph.D.). He now lives
at Phillips Exeter Academy in New Hampshire, where he teaches
mathematics, coaches, and supervises a dormitory. If he had
spare time, it would be spent at the harpsichord, not at the
computer.

The current excitement over fractal images and the dynamical systems that
produce them is a boon for mathematics teachers. This enticing subject is so
accessible that we can not help but feel that our students will finally find the
inspiration that has heretofore been lacking in their approach to mathematics.

The central theme of dynamical systems is the iteration of functions. One studies
the mathematics of feedback loops, which incessantly turn output back into input.
Exploration would therefore seem to be a simple matter: Select a favorite function
and a seed value, then iterate and wait for rich patterns to appear.

Alas, it is not that simple. For one thing, nothing might happen. To see
extraordinary sights, after all, one usually has to know where to look. For another,

THE COLLEGE MATHEMATICS JOURNAL

those obnoxious questions may still arise: m a t is the purpose? Is this stuff really
good for anything? Why iterate functions in the first place? Indeed, is there any
more to the mathematics than just the production of complicated images? Even a
teacher who believes that this is reason enough to be interested cannot expect very
many students to commit themselves to a project whose purpose may seem to be
just another attempt to trick them into doing some mathematics.

It is fortunate that the opportunity presented by this new subject does not reside
solely (and superficially) in the beauty and complexity of the graphics that now
flood the marketplace. Rather, it is that these fascinating patterns are locked up in
the simplest of mathematical formulas. One can be learning the basics as one
explores this territory, which, although breathtakingly new, lies remarkably close to
home. This will encourage those teachers who are wary of any attempts to squeeze
more new applications into an already crowded curriculum. Instead of displacing
traditional topics, the study of dynamical systems gives us new ways to develop
fundamental concepts, strengthening the traditional curriculum while enriching it.
Moreover, the novelty will breathe life into our dry, dusty subject. Most significant,
perhaps, is the abundance of easily asked, open-ended questions. Our budding
scientists can go as far with the material as they want. A few of them may even feel
that they have a chance to make original contributions.

This article, which is organized around a single, well-known algorithm for root
extraction, presents an effective way of incorporating dynamical systems into the
teaching of mathematics. As the sample exercises show, students have the opportu-
nity to do some purposeful analysis on this algorithm. The opening item might be
posed as a follow-up to a student-initiated question about how calculating ma-
chines obtain their answers:

1. Calculate the positive square root of 5, accurate to (say) eight decimal
places, using only the operations of elementary arithmetic.

Unless someone in the class already knows the Babylonian [I] divide-and-aver-
age process x +R(x) = (x + 5/x)/2, the teacher may have to orchestrate its
rediscovery. At the very least, the class should learn how this venerable and
marvelous method works; it is rich in mathematical themes. The target number is
trapped between two known values, x and 5/x, where x initially is a guess. The
target is, in fact, the geometric mean of these values. The arithmetic mean beckons
as an easily calculated and improved approximation to the target; one therefore
replaces x by R(x), hence 5/x by 5/R(x), too. In this way, x and 5/x are brought
closer together (see item 3 below); iteration ad infiniturn brings x and 5/x
arbitrarily close together. The sequence {x,) defined recursively by x,,, =R(x,)
must therefore converge to the desired square root, given any positive x,. As will
be seen, the rate of convergence is astonishingly rapid.

2. Prove that 6 lies between x and 5/x, for any positive number x.

3. Given that y is between x and 5/x, show that 5/y is, too.

At an elementary level, this bracketing theme can serve as an introduction to our
project. I present such a class with an extensive table of pairs (x, y) of positive
solutions to xy = 5, then ask for the number that separates every such pair.

The student also has opportunities to write meaningful computer programs to
test a growing theory. I find it expedient to begin computer work by giving the class
a program fragment with which everyone can begin to experiment. As the material

VOL. 22, NO. 1, JANUARY 1991 49

evolves, so does the program. In pseudocode:

input b { the number whose root we seek }
- input x { a seed value, or initial guess }

for k := 1 to 20

x := (x + b/x)/2

print x

This program is a simple example of a dynamical system. It was designed to seek
out solutions to a specified problem; we need only provide a seed value to initiate
the process each time.

4. Does the outcome of a root-finding search depend on which seed
value we feed the program? Are there seed values that do not lead to a
root? [Except for zero, each seed value leads to the nearer root.]

5. Study the rate of convergence of the square-root process. In particu-
lar, how many steps are necessary to obtain 1000-place accuracy for 6?
Does the 20-step program above suffice, assuming that the computer
would print out 1000 places if we wanted to see them? [Yes; ten steps
would suffice.]

For item 5 , it is desirable for the software to deliver as many decimal places as it is
capable of. The quadratic rate of convergence is then easy to see. Roughly put, the
number of correct significant digits doubles with each iteration, once x is suffi-
ciently close to the target. Here is why: Let m be the positive square root of b, so
that 2(R(x) -m) = (x -m)2/x. If m <x (which will be true after just one step of
the process, if the initial approximation is positive), then (R(x) -m)/(x -m) <
1/2 shows that the error shrinks to zero. Once x -m drops below 1, R(x) -m <
($m)(x -m)2 ensures the accuracy-doubling.

The Newton-Raphson method x +R(x) = [(n - l)x + b/xn-'l/n extends the
Babylonian method to the problem of calculating nth roots of b. The cube-root
case will be of interest to us below. Computer-generated data reveal the same
accuracy-doubling phenomenon, and it can be proved as above. Incidentally, it is
possible to devise algorithms, such as Hutton's [2], that deliver even greater rates
of convergence.

Complex Numbers

It is well known that the real number system is inadequate when it comes to
providing solutions to equations. We must look within the larger system of
imaginaries to find everything we need. These nonreal quantities have been
invisibly exerting their influence all along.

6. Consider the square-root-finding program again. What happens when
we provide a negative value for b (and seed the process with a nonzero
real x-value)?

The computer provides a chaotic data stream for us to puzzle over. It is easy to
dismiss the example by simply observing that negative numbers do not have real
square roots (thus there is nothing to which the process can converge), but this is
only a partial explanation, and it would miss a thematic point of this investigation.
The time has come to include imaginary numbers in our discussion. Depending on

THE COLLEGE MATHEMATICS JOURNAL 50

the resident computer language, the following transition may not be necessary:

7. Modify the program that finds square roots so that it will be able to
solve nonreal problems as well. This means that it should be able to find
square roots for 3 + 4i, for example. [k (2 + i)]

Because every complex number is a pair of real numbers, we now have twice as
many variables. It is worth emphasizing, however, that the function being iterated
is still the familiar R(z) = (z + b/z)/2, where z stands for x + yi and b stands for
c + di. The next exercises are essential:

8. Apply the square-root finder to a few simple examples, including
some for which you already know the two roots. In particular, what
happens when we ask for a square root of - 1 and seed the process with a
nonreal value?

9. Different seed values can produce different results when they are fed
to a root-finding program. Explore this phenomenon for the square-root
finder above. Let us consider, for example, a search for the two square
roots of 3 + 4i, using (in turn) the values z = 1, z = - 1 + 3i, z = 2 - 5i,
and z = -2 + 4i to seed the process.

10. Given a square-root-finding program and a choice of seed value, we
anticipate three possible outcomes: the process will converge to one of the
two roots, or else it will do neither, instead wandering aimlessly forever.
Try to discover a simple rule that predicts accurately which of the three
outcomes will occur. Can you prove that your rule will work correctly every
time? [The final question is difficult; see item 14 and the ensuing discus-
sion.]

Exercise 10 makes a good classroom activity. Every student can participate in
color-coding the complex plane. Each seed value receives its color according to the
destination of its orbit-the sequence of values produced by the process. If
nothing else, this activity will afford some practice plotting complex numbers; the
real goal, however, is the discovery of the square-root rule: Seed values are
attracted to the nearer root, unless there is no nearer root. Those seed values that lie
on the perpendicular bisector of the segment joining the roots do not lead anywhere.
This principle explains the behavior of the real square-root finder when it is given
the job of finding the square roots of a negative real number (see item 6). It also
explains the chaotic results when -2 + 4i is used to seed the search for a square
root of 3 + 4i (see item 9; see item 12 also, however).

11. Suppose that m2 =b, and that z is nonzero and equidistant from m
and -m. Prove that R(z) = (z + b/z)/2 is also equidistant from m and
-m. [The hypothesis is I z -ml = I z + mi, which implies that l z -m12 =

Iz + m 2 . In turn, this may be rewritten in the form lz2- 2mz + bl =

z 2+ 2mz + bl. Now divide by 21zl.l

12. If, while searching for a square root of 3 + 4i, the computer is
allowed to calculate too many terms of the orbit of -2 + 4i, it is quite
possible that the resulting sequence will approach one of the roots after
all. Does this contradict the result of the preceding problem? [Roundoff
errors cause the orbit to drift away from the true line of chaos.]

13. Although we still use the Babylonian formula when we search for
imaginary square roots, it is no longer correct to think of the target value

VOL. 22, NO. 1, JANUARY 1991 51

as being trapped between two known values as these values are brought
closer together. Use the example b = 3 + 4i and the seed value z = 1 to
explain this remark.

The preceding exercise casts considerable doubt on the reliability of the complex
square-root finder. In other words, it is not at all obvious that the process will
converge to whichever root is closer to the seed value. Although this is an
elementary result, it is remarkably difficult to establish without some sort of
guidance; it may be necessary to leave this theorem unproved. On the other hand,
one's intuition says that seed values that are sufficiently close to a target ought to
lead quickly to that target, as in the following:

14. If lz -ml < 21m1/3, then IR(z) -ml < lz -ml < 2m1/3 must hold
as well. The sequence of z-values approaches m as a limit.

This is proved by first writing R (z) -m in the form z -m12/(21zl) and then
noting that lm1/3 < lzl is implied by the triangle inequality and the hypothesis.
Both lz -m/(21zl) < 1 and z -m2/(21zl) < Iz -m now follow. Establishing con-
vergence requires more careful inequalities: Let 1z -ml = kml , where k < 2/3. As
above, one deduces from the triangle inequality that (1 - k)lml I lzl, from which
R (z) -ml I klz -m1/(2 - 2k) follows. Because k/(2 - 2k) < 1, one deduces that
Iz -ml converges geometrically to zero.

For the sake of completeness, I include the following outline of how one may
establish the general result: The most efficient way to proceed is to change
variables. The dynamical system z +R(z) is transformed into a new system by
replacing each z by m(l + w)/(l -w), where m2 = b and w is the new variable to
watch. The dynamical system that results from this transformation is simply
w +w2! Moreover, the target z = m corresponds to w = 0, the dividing line
Iz -m = lz + ml corresponds to the unit circle in the w-plane, and the attractive
region z -m < z + ml corresponds to the interior of the unit circle. Now, instead
of iterating the process z +R(z) and watching to see whether z approaches m,
one iterates the process w +w2 and watches to see whether w approaches 0. So
long as the squaring process starts inside the unit circle, this is certain to happen.

15. The preceding discussion of how the Babylonian square-root pro-
cess works dynamically has revealed a very simple geometric principle. It is
natural, therefore, for us to try to extend this understanding to the
cube-root process. Modify the program that finds square roots of complex
numbers so that it will find cube roots instead. Try your program on the
cube roots of 8.

As before, the class now can engage in a color-coding activity. Seed values are
colored according to the behavior of their orbits. Three colors are needed for the
three cube roots of 8, and a fourth color reserved for those seed values whose
orbits exhibit indecisive behavior. (It is not easy this time to give examples of such
indecisive points, however.) A class that has studied the theorem of
de Moivre will no doubt expect some sort of three-fold symmetry to be present in
the finished diagram, and even those students who have had no experience
extracting roots via polar coordinates will recognize the equiangular placement of
z = 2, z = - 1 + i6,and z = -1-i6.Someone, remembering that (almost)
every real seed value leads to the real cube root, will draw the (almost) correct
conclusion that the real axis should receive only one color. A few students may be
willing to conjecture what the correct arrangement of colors is, but it is unlikely

THE COLLEGE MATHEMATICS JOURNAL 52

that anyone will anticipate the staggering detail:

Seed values for the $!? algorithm are colored according to the behavior of their orbits. The
black seeds converge to 2.

The indecisive points form the complicated boundary that separates one color
from another. One of them is the origin, which is the central point in the figure. As
we have seen on occasion, the behavior of these boundary points during the
root-finding process is just as confusing as is their appearance. What makes the
bougdary configuration so complicated visually is that each boundary point borders
on all three colors. Unlike the square-root diagram, this figure does require a
computer program! In pseudocode:

for each pixel P

begin

Z :=user-coordinates(P) {seed root search}
color :=background
count := 0
repeat
2 := (2* Z + 8 / (Z * Z)) / 3
count :=count + 1
if jZ - root 11 < error then color := color1 else

if IZ - root 2 I < error then color :=color 2 else
if I Z - root 31 < error then color :=color 3

until (color < > background) or (enough < count)
apply color to P
end

VOL. 22, NO. 1, JANUARY 1991

Convergence is assured once the orbit of Z wanders within error of rooti, at
which point calculation for pixel P halts and colori is assigned. However, it is
impractical to wait for this outcome if an astronomical number of iterations is
required, or if the orbit has no limit at all. Thus calculations must be halted once
more than enough iterations have been tried. See the Appendix for a BASIC
version of this program.

Root-Finding Wrap-Up

This startling picture is an unexpected conclusion to our investigation of the
root-finding process. What makes this process even more interesting is its history,
for this represents perhaps the first well-studied problem whose solutions form
what is now called a fractal. In 1879, the British mathematician Arthur Cayley
proposed to study the dynamical behavior of complex numbers when the Newton-
Raphson cube-root method is applied to them [3] . In effect, his goal was to
understand and describe the pattern we have just seen. Having already disposed
easily of square roots, Cayley may have felt confident that he would be successful
with this problem; however, he never did publish any results. It was not until some
forty years later that two French mathematicians, Pierre Fatou [4] and Gaston
Julia [S], were able to resolve Cayley's problem. It is sad that neither man lived
long enough to see these images. Julia even lived until 1978. (In his honor, the
chaotic sets of indecisive points that typically arise in dynamical systems are now
called Julia sets.) The recent advances in computer graphics, which make such
images possible, have thereby reawakened interest in what is an old subject.

What sort of mathematics course accommodates such exploration? On several
occasions, I have introduced this material during a ten-week course (forty meet-
ings), which has the following syllabus: vectors, polar coordinates and complex
numbers (including de Moivre's theorem, of course), a review of graphing tech-
niques, elementary sequences and series, and an introduction to limits. This course
is the last one in our curriculum before the onset of calculus. The teacher can
therefore draw on all of precalculus mathematics. In particular, one can approach
the cube-roots-of-8 problem in at least three fundamentally different ways: via
factoring and solving a cubic equation, via trigonometry and the theorem of
de Moivre, and-lastly-via the dynamic method of iteration.

It is worth emphasizing that much good mathematics is done before production
of the final picture. Among other things, this short study of dynamical systems
provides meaningful examples of sequences, whereby certain irrational quantities
are exhibited as limits of rationals. Students can have hands-on experience in the
devising, coding, and testing of algorithms. Moreover, these dynamic algorithms
stand in marked contrast to traditional methods of solving mathematical problems.

Appendix

100 screen 1 : color 0,l : cls : hph = 319 : uph = 199
110 left= - 2 : right=3 : low= - 2 : high = 2
120 window (left, high) - (right, low)
130 hdel = (right-left)/hpix : vdel = (high-low)/uph
200 for j = 0 to hph
205 p = left +j * hdel
210 for i = 0 to uph
215 q = low + i * udel

THE COLLEGE MATHEMATICS JOURNAL

220 x = p : y = q : col=O

300 for k = 1 to 20

310 d e n o m = (x * x + y * y) * (x * x + y * y)

312 i f denom < 0.000001 then 400

320 newx=(2*x + 8 * x * x - y * y) /denom)/3

322 newy = (2* y - 16 * x * y/denom)/3

330 x = newx : y =newy

340 i f 0 . 5 < (~ - 2) * (~ - 2) + y * ythen350

345 col = 1 : goto 400

350 if 0.5 < (x + 1)* (x + 1) + (y - 1.73)* (y - 1.73) then 360

355 col = 2 : goto 400

360 i f0 .5 < (x + l) * (x + 1) + (y + 1.73)*(y+ 1.73) then 370

365 col = 3 : goto 400

370 next k

400 pset(p, q) , col

500 next i

510 next j

600 end

Lines 200 and 210 instruct the computer to examine every pixel on the screen,
which, according to the minimal CGA specifications of line 100, measures 320
horizontally by 200 vertically. Lines 110 and 120 associate these pixels with the
region -2 Ix I 3, -2 I y I 2. This viewing window contains all three roots with a
little room to spare. At any instant, the pixel being examined represents the point
(p , q) . Initially, the pixel is assigned the color black (color 0); this assignment is
changed to a different color if the orbit of (p ,q) wanders close enough to one of
the three target points within twenty iterations (line 300). The active point on the
orbit is named (x , y) , although it is temporarily named (newx, newy) during the
calculation stage. Color decisions are made in lines 340 through 365, and
the actual coloring of the pixel takes place at line 400.

References

1. Dirk Struik, A Concise History of Mathematics, Vol. I , Dover, 1948, p. 29.
2. D. F. Bailey, A historical survey of solution by functional iteration, Mathematics Magazine 62 (1989)

159.
3. Arthur Cayley, The Newton-Fourier imaginary problem, American Journal of Mathematics 2 (1879)

97.
4. 	Pierre Fatou, Sur les Cquations fonctionelles, Bulletin de la Socie'ti Mathimatique Francaise 47 (1919)

161-271; 48 (1920) 33-94, 208-314.
5. 	Gaston Julia, Sur I'iteration des fonctions rationelles, Journal de Mathe'matiques Pures et Appliquies 8

(1918) 47-245.

VOL. 22, NO. I , JANUARY 1991

