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The Root-Finding Route to Chaos 
Richard Parris 

Richard Parris received his mathematics degrees from Tufts 
University (B.A.) and Princeton University (Ph.D.). He now lives 
at Phillips Exeter Academy in New Hampshire, where he teaches 
mathematics, coaches, and supervises a dormitory. If he had 
spare time, it would be spent at the harpsichord, not at the 
computer. 

The current excitement over fractal images and the dynamical systems that 
produce them is a boon for mathematics teachers. This enticing subject is so 
accessible that we can not help but feel that our students will finally find the 
inspiration that has heretofore been lacking in their approach to mathematics. 

The central theme of dynamical systems is the iteration of functions. One studies 
the mathematics of feedback loops, which incessantly turn output back into input. 
Exploration would therefore seem to be a simple matter: Select a favorite function 
and a seed value, then iterate and wait for rich patterns to appear. 

Alas, it is not that simple. For one thing, nothing might happen. To see 
extraordinary sights, after all, one usually has to know where to look. For another, 
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those obnoxious questions may still arise: m a t  is the purpose? Is this stuff really 
good for anything? Why iterate functions in the first place? Indeed, is there any 
more to the mathematics than just the production of complicated images? Even a 
teacher who believes that this is reason enough to be interested cannot expect very 
many students to commit themselves to a project whose purpose may seem to be 
just another attempt to trick them into doing some mathematics. 

It is fortunate that the opportunity presented by this new subject does not reside 
solely (and superficially) in the beauty and complexity of the graphics that now 
flood the marketplace. Rather, it is that these fascinating patterns are locked up in 
the simplest of mathematical formulas. One can be learning the basics as one 
explores this territory, which, although breathtakingly new, lies remarkably close to 
home. This will encourage those teachers who are wary of any attempts to squeeze 
more new applications into an already crowded curriculum. Instead of displacing 
traditional topics, the study of dynamical systems gives us new ways to develop 
fundamental concepts, strengthening the traditional curriculum while enriching it. 
Moreover, the novelty will breathe life into our dry, dusty subject. Most significant, 
perhaps, is the abundance of easily asked, open-ended questions. Our budding 
scientists can go as far with the material as they want. A few of them may even feel 
that they have a chance to make original contributions. 

This article, which is organized around a single, well-known algorithm for root 
extraction, presents an effective way of incorporating dynamical systems into the 
teaching of mathematics. As the sample exercises show, students have the opportu- 
nity to do some purposeful analysis on this algorithm. The opening item might be 
posed as a follow-up to a student-initiated question about how calculating ma-
chines obtain their answers: 

1. Calculate the positive square root of 5, accurate to (say) eight decimal 
places, using only the operations of elementary arithmetic. 

Unless someone in the class already knows the Babylonian [I] divide-and-aver-
age process x +R(x) = (x  + 5/x)/2, the teacher may have to orchestrate its 
rediscovery. At the very least, the class should learn how this venerable and 
marvelous method works; it is rich in mathematical themes. The target number is 
trapped between two known values, x and 5/x, where x initially is a guess. The 
target is, in fact, the geometric mean of these values. The arithmetic mean beckons 
as an easily calculated and improved approximation to the target; one therefore 
replaces x by R(x), hence 5/x by 5/R(x), too. In this way, x and 5/x are brought 
closer together (see item 3 below); iteration ad  infiniturn brings x and 5/x 
arbitrarily close together. The sequence {x,) defined recursively by x,,, =R(x,) 
must therefore converge to the desired square root, given any positive x,. As will 
be seen, the rate of convergence is astonishingly rapid. 

2. Prove that 6 lies between x and 5/x, for any positive number x. 

3. Given that y is between x and 5/x, show that 5/y is, too. 

At an elementary level, this bracketing theme can serve as an introduction to our 
project. I present such a class with an extensive table of pairs (x, y) of positive 
solutions to xy = 5, then ask for the number that separates every such pair. 

The student also has opportunities to write meaningful computer programs to 
test a growing theory. I find it expedient to begin computer work by giving the class 
a program fragment with which everyone can begin to experiment. As the material 
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evolves, so does the program. In pseudocode: 

input b { the number whose root we seek } 
- input x { a seed value, or initial guess } 

for k := 1 to 20 

x := (x + b/x)/2 

print x 


This program is a simple example of a dynamical system. It was designed to seek 
out solutions to a specified problem; we need only provide a seed value to initiate 
the process each time. 

4. Does the outcome of a root-finding search depend on which seed 
value we feed the program? Are there seed values that do not lead to a 
root? [Except for zero, each seed value leads to the nearer root.] 

5.  Study the rate of convergence of the square-root process. In particu- 
lar, how many steps are necessary to obtain 1000-place accuracy for 6? 
Does the 20-step program above suffice, assuming that the computer 
would print out 1000 places if we wanted to see them? [Yes; ten steps 
would suffice.] 

For item 5 ,  it is desirable for the software to deliver as many decimal places as it is 
capable of. The quadratic rate of convergence is then easy to see. Roughly put, the 
number of correct significant digits doubles with each iteration, once x is suffi- 
ciently close to the target. Here is why: Let m be the positive square root of b, so 
that 2(R(x) -m) = (x -m)2/x. If m <x (which will be true after just one step of 
the process, if the initial approximation is positive), then (R(x)  -m)/(x -m) < 
1/2 shows that the error shrinks to zero. Once x -m drops below 1, R(x)  -m < 
($m)(x -m)2 ensures the accuracy-doubling. 

The Newton-Raphson method x +R(x) = [(n - l )x  + b/xn-'l/n extends the 
Babylonian method to the problem of calculating nth roots of b. The cube-root 
case will be of interest to us below. Computer-generated data reveal the same 
accuracy-doubling phenomenon, and it can be proved as above. Incidentally, it is 
possible to devise algorithms, such as Hutton's [2], that deliver even greater rates 
of convergence. 

Complex Numbers 

It is well known that the real number system is inadequate when it comes to 
providing solutions to equations. We must look within the larger system of 
imaginaries to find everything we need. These nonreal quantities have been 
invisibly exerting their influence all along. 

6. Consider the square-root-finding program again. What happens when 
we provide a negative value for b (and seed the process with a nonzero 
real x-value)? 

The computer provides a chaotic data stream for us to puzzle over. It is easy to 
dismiss the example by simply observing that negative numbers do not have real 
square roots (thus there is nothing to which the process can converge), but this is 
only a partial explanation, and it would miss a thematic point of this investigation. 
The time has come to include imaginary numbers in our discussion. Depending on 
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the resident computer language, the following transition may not be necessary: 

7. Modify the program that finds square roots so that it will be able to 
solve nonreal problems as well. This means that it should be able to find 
square roots for 3 + 4i, for example. [ k ( 2  + i)] 

Because every complex number is a pair of real numbers, we now have twice as 
many variables. It is worth emphasizing, however, that the function being iterated 
is still the familiar R(z)  = (z  + b/z)/2, where z stands for x + yi and b stands for 
c + di. The next exercises are essential: 

8. Apply the square-root finder to a few simple examples, including 
some for which you already know the two roots. In particular, what 
happens when we ask for a square root of - 1 and seed the process with a 
nonreal value? 

9. Different seed values can produce different results when they are fed 
to a root-finding program. Explore this phenomenon for the square-root 
finder above. Let us consider, for example, a search for the two square 
roots of 3 + 4i, using (in turn) the values z = 1, z = - 1 + 3i, z = 2 - 5i, 
and z = -2 + 4i to seed the process. 

10. Given a square-root-finding program and a choice of seed value, we 
anticipate three possible outcomes: the process will converge to one of the 
two roots, or else it will do neither, instead wandering aimlessly forever. 
Try to discover a simple rule that predicts accurately which of the three 
outcomes will occur. Can you prove that your rule will work correctly every 
time? [The final question is difficult; see item 14 and the ensuing discus- 
sion.] 

Exercise 10 makes a good classroom activity. Every student can participate in 
color-coding the complex plane. Each seed value receives its color according to the 
destination of its orbit-the sequence of values produced by the process. If 
nothing else, this activity will afford some practice plotting complex numbers; the 
real goal, however, is the discovery of the square-root rule: Seed values are 
attracted to the nearer root, unless there is no nearer root. Those seed values that lie 
on the perpendicular bisector of the segment joining the roots do not lead anywhere. 
This principle explains the behavior of the real square-root finder when it is given 
the job of finding the square roots of a negative real number (see item 6). It also 
explains the chaotic results when -2  + 4i is used to seed the search for a square 
root of 3 + 4i (see item 9; see item 12 also, however). 

11. Suppose that m2 =b, and that z is nonzero and equidistant from m 
and -m. Prove that R(z) = ( z  + b/z)/2 is also equidistant from m and 
-m. [The hypothesis is I z -ml = I z + mi, which implies that l z -m12 = 

Iz + m 2 .  In turn, this may be rewritten in the form lz2- 2mz + bl = 

z 2+ 2mz + bl. Now divide by 21zl.l 

12. If, while searching for a square root of 3 + 4i, the computer is 
allowed to calculate too many terms of the orbit of -2 + 4i, it is quite 
possible that the resulting sequence will approach one of the roots after 
all. Does this contradict the result of the preceding problem? [Roundoff 
errors cause the orbit to drift away from the true line of chaos.] 

13. Although we still use the Babylonian formula when we search for 
imaginary square roots, it is no longer correct to think of the target value 
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as being trapped between two known values as these values are brought 
closer together. Use the example b = 3 + 4i and the seed value z = 1 to 
explain this remark. 

The preceding exercise casts considerable doubt on the reliability of the complex 
square-root finder. In other words, it is not at all obvious that the process will 
converge to whichever root is closer to the seed value. Although this is an 
elementary result, it is remarkably difficult to establish without some sort of 
guidance; it may be necessary to leave this theorem unproved. On the other hand, 
one's intuition says that seed values that are sufficiently close to a target ought to 
lead quickly to that target, as in the following: 

14. If lz -ml < 21m1/3, then IR(z) -ml < lz -ml < 2m1/3 must hold 
as well. The sequence of z-values approaches m as a limit. 

This is proved by first writing R ( z )  -m in the form z -m12/(21zl) and then 
noting that lm1/3 < lzl is implied by the triangle inequality and the hypothesis. 
Both lz -m/(21zl) < 1 and z -m2/(21zl) < Iz -m now follow. Establishing con- 
vergence requires more careful inequalities: Let 1z -ml = kml ,  where k < 2/3. As 
above, one deduces from the triangle inequality that (1 - k)lml I lzl, from which 
R ( z )  -ml I klz -m1/(2 - 2k)  follows. Because k/(2 - 2k)  < 1, one deduces that 
Iz -ml converges geometrically to zero. 

For the sake of completeness, I include the following outline of how one may 
establish the general result: The most efficient way to proceed is to change 
variables. The dynamical system z +R(z)  is transformed into a new system by 
replacing each z by m(l  + w)/(l -w), where m2 = b and w is the new variable to 
watch. The dynamical system that results from this transformation is simply 
w +w2! Moreover, the target z = m corresponds to w = 0, the dividing line 
Iz -m = lz + ml corresponds to the unit circle in the w-plane, and the attractive 
region z -m < z + ml corresponds to the interior of the unit circle. Now, instead 
of iterating the process z +R(z)  and watching to see whether z approaches m, 
one iterates the process w +w2 and watches to see whether w approaches 0. So 
long as the squaring process starts inside the unit circle, this is certain to happen. 

15. The preceding discussion of how the Babylonian square-root pro- 
cess works dynamically has revealed a very simple geometric principle. It is 
natural, therefore, for us to try to extend this understanding to the 
cube-root process. Modify the program that finds square roots of complex 
numbers so that it will find cube roots instead. Try your program on the 
cube roots of 8. 

As before, the class now can engage in a color-coding activity. Seed values are 
colored according to the behavior of their orbits. Three colors are needed for the 
three cube roots of 8, and a fourth color reserved for those seed values whose 
orbits exhibit indecisive behavior. (It is not easy this time to give examples of such 
indecisive points, however.) A class that has studied the theorem of 
de Moivre will no doubt expect some sort of three-fold symmetry to be present in 
the finished diagram, and even those students who have had no experience 
extracting roots via polar coordinates will recognize the equiangular placement of 
z = 2, z = - 1 + i6,and z = -1-i6.Someone, remembering that (almost) 
every real seed value leads to the real cube root, will draw the (almost) correct 
conclusion that the real axis should receive only one color. A few students may be 
willing to conjecture what the correct arrangement of colors is, but it is unlikely 
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that anyone will anticipate the staggering detail: 

Seed values for the $!? algorithm are colored according to the behavior of their orbits. The 
black seeds converge to 2. 

The indecisive points form the complicated boundary that separates one color 
from another. One of them is the origin, which is the central point in the figure. As 
we have seen on occasion, the behavior of these boundary points during the 
root-finding process is just as confusing as is their appearance. What makes the 
bougdary configuration so complicated visually is that each boundary point borders 
on all three colors. Unlike the square-root diagram, this figure does require a 
computer program! In pseudocode: 

for each pixel P 

begin 

Z :=user-coordinates(P) {seed root search} 
color :=background 
count := 0 
repeat 
2 := (2* Z + 8 / ( Z  * Z ) ) / 3  
count :=count + 1 
if jZ - root 11 < error then color := color1 else 

if IZ - root 2 I < error then color :=color 2 else 
if I Z - root 31 < error then color :=color 3 

until (color < > background) or (enough < count) 
apply color to P 
end 
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Convergence is assured once the orbit of Z wanders within error of rooti, at 
which point calculation for pixel P halts and colori is assigned. However, it is 
impractical to wait for this outcome if an astronomical number of iterations is 
required, or if the orbit has no limit at all. Thus calculations must be halted once 
more than enough iterations have been tried. See the Appendix for a BASIC 
version of this program. 

Root-Finding Wrap-Up 

This startling picture is an unexpected conclusion to our investigation of the 
root-finding process. What makes this process even more interesting is its history, 
for this represents perhaps the first well-studied problem whose solutions form 
what is now called a fractal. In 1879, the British mathematician Arthur Cayley 
proposed to study the dynamical behavior of complex numbers when the Newton- 
Raphson cube-root method is applied to them [3 ] .  In effect, his goal was to 
understand and describe the pattern we have just seen. Having already disposed 
easily of square roots, Cayley may have felt confident that he would be successful 
with this problem; however, he never did publish any results. It was not until some 
forty years later that two French mathematicians, Pierre Fatou [4 ]  and Gaston 
Julia [S], were able to resolve Cayley's problem. It is sad that neither man lived 
long enough to see these images. Julia even lived until 1978. (In his honor, the 
chaotic sets of indecisive points that typically arise in dynamical systems are now 
called Julia sets.) The recent advances in computer graphics, which make such 
images possible, have thereby reawakened interest in what is an old subject. 

What sort of mathematics course accommodates such exploration? On several 
occasions, I have introduced this material during a ten-week course (forty meet- 
ings), which has the following syllabus: vectors, polar coordinates and complex 
numbers (including de Moivre's theorem, of course), a review of graphing tech- 
niques, elementary sequences and series, and an introduction to limits. This course 
is the last one in our curriculum before the onset of calculus. The teacher can 
therefore draw on all of precalculus mathematics. In particular, one can approach 
the cube-roots-of-8 problem in at least three fundamentally different ways: via 
factoring and solving a cubic equation, via trigonometry and the theorem of 
de Moivre, and-lastly-via the dynamic method of iteration. 

It is worth emphasizing that much good mathematics is done before production 
of the final picture. Among other things, this short study of dynamical systems 
provides meaningful examples of sequences, whereby certain irrational quantities 
are exhibited as limits of rationals. Students can have hands-on experience in the 
devising, coding, and testing of algorithms. Moreover, these dynamic algorithms 
stand in marked contrast to traditional methods of solving mathematical problems. 

Appendix 

100 screen 1 : color 0,l : cls : hph = 319 : uph = 199 
110 left= - 2 :  right=3 : low= - 2 :  high = 2  
120 window (left, high) - (right, low) 
130 hdel = (right-left)/hpix : vdel = (high-low)/uph 
200 for j = 0 to hph 
205 p = left +j * hdel 
210 for i = 0 to uph 
215 q = low + i * udel 
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220 x = p  : y = q  : col=O 

300 for k = 1 to 20 

310 d e n o m = ( x * x + y * y ) * ( x * x + y  * y )  

312 i f  denom < 0.000001 then 400 

320 newx=(2*x  + 8 * x * x - y  * y) /denom)/3 

322 newy = (2* y - 16 * x * y/denom)/3 

330 x = newx : y =newy 

340 i f 0 . 5 < ( ~ - 2 ) * ( ~ - 2 ) + y * ythen350 

345 col = 1 : goto 400 

350 if 0.5 < ( x  + 1)* ( x  + 1) + ( y  - 1.73)* ( y  - 1.73) then 360 

355 col = 2 : goto 400 

360 i f0 .5  < ( x +  l ) * ( x +  1 ) + ( y  + 1.73)*(y+ 1.73) then 370 

365 col = 3 : goto 400 

370 next k 

400 pset(p, q ) ,  col 

500 next i 

510 next j 

600 end 


Lines 200 and 210 instruct the computer to examine every pixel on the screen, 
which, according to the minimal CGA specifications of line 100, measures 320 
horizontally by 200 vertically. Lines 110 and 120 associate these pixels with the 
region -2 Ix I 3, -2 I y I 2. This viewing window contains all three roots with a 
little room to spare. At any instant, the pixel being examined represents the point 
( p ,  q) .  Initially, the pixel is assigned the color black (color 0); this assignment is 
changed to a different color if the orbit of ( p ,q )  wanders close enough to one of 
the three target points within twenty iterations (line 300). The active point on the 
orbit is named ( x ,  y) ,  although it is temporarily named (newx, newy) during the 
calculation stage. Color decisions are made in lines 340 through 365, and 
the actual coloring of the pixel takes place at line 400. 
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