
Using Stoustrup’s Programming Practices and Principles
in C++ as an Introductory Text for Computing I

Geoff Hagopian

College of the Desert

ghagopian@collegeofthedesert.edu

January 3, 2015

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 1 / 15



Overview

1 About Me

2 About Me

3 About Me

4 About Me

5 About Me

6 About Me

7 About Me

8 About Me

9 Stroustrup’s Philosophy

10 Stroustrup’s Philosophy

11 Stroustrup’s Philosophy

12 Stroustrup’s Philosophy

13 Stroustrup’s Philosophy

14 My First Implementation

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 2 / 15



My Brief CV

(I) Earned MA in Mathematics from UC Davis.

(II) Worked briefly in industry (Los Angeles/Hollywood).

(III) Taught math at Community Colleges (PCC, GCC, Palomar, COD).

(IV) Started teaching Physics 5 (Scientific Computing) in 1997.

(V) Two one-year sabbaticals on cryptography and scientific
visualization.

(VI) Studied Racket with Steven Bloch.

(VII) Built CS program at COD.

(VIII) http://geofhagopian.net/

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 3 / 15

http://home.adelphi.edu/~sbloch/
http://geofhagopian.net/


My Brief CV

(I) Earned MA in Mathematics from UC Davis.

(II) Worked briefly in industry (Los Angeles/Hollywood).

(III) Taught math at Community Colleges (PCC, GCC, Palomar, COD).

(IV) Started teaching Physics 5 (Scientific Computing) in 1997.

(V) Two one-year sabbaticals on cryptography and scientific
visualization.

(VI) Studied Racket with Steven Bloch.

(VII) Built CS program at COD.

(VIII) http://geofhagopian.net/

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 3 / 15

http://home.adelphi.edu/~sbloch/
http://geofhagopian.net/


My Brief CV

(I) Earned MA in Mathematics from UC Davis.

(II) Worked briefly in industry (Los Angeles/Hollywood).

(III) Taught math at Community Colleges (PCC, GCC, Palomar, COD).

(IV) Started teaching Physics 5 (Scientific Computing) in 1997.

(V) Two one-year sabbaticals on cryptography and scientific
visualization.

(VI) Studied Racket with Steven Bloch.

(VII) Built CS program at COD.

(VIII) http://geofhagopian.net/

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 3 / 15

http://home.adelphi.edu/~sbloch/
http://geofhagopian.net/


My Brief CV

(I) Earned MA in Mathematics from UC Davis.

(II) Worked briefly in industry (Los Angeles/Hollywood).

(III) Taught math at Community Colleges (PCC, GCC, Palomar, COD).

(IV) Started teaching Physics 5 (Scientific Computing) in 1997.

(V) Two one-year sabbaticals on cryptography and scientific
visualization.

(VI) Studied Racket with Steven Bloch.

(VII) Built CS program at COD.

(VIII) http://geofhagopian.net/

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 3 / 15

http://home.adelphi.edu/~sbloch/
http://geofhagopian.net/


My Brief CV

(I) Earned MA in Mathematics from UC Davis.

(II) Worked briefly in industry (Los Angeles/Hollywood).

(III) Taught math at Community Colleges (PCC, GCC, Palomar, COD).

(IV) Started teaching Physics 5 (Scientific Computing) in 1997.

(V) Two one-year sabbaticals on cryptography and scientific
visualization.

(VI) Studied Racket with Steven Bloch.

(VII) Built CS program at COD.

(VIII) http://geofhagopian.net/

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 3 / 15

http://home.adelphi.edu/~sbloch/
http://geofhagopian.net/


My Brief CV

(I) Earned MA in Mathematics from UC Davis.

(II) Worked briefly in industry (Los Angeles/Hollywood).

(III) Taught math at Community Colleges (PCC, GCC, Palomar, COD).

(IV) Started teaching Physics 5 (Scientific Computing) in 1997.

(V) Two one-year sabbaticals on cryptography and scientific
visualization.

(VI) Studied Racket with Steven Bloch.

(VII) Built CS program at COD.

(VIII) http://geofhagopian.net/

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 3 / 15

http://home.adelphi.edu/~sbloch/
http://geofhagopian.net/


My Brief CV

(I) Earned MA in Mathematics from UC Davis.

(II) Worked briefly in industry (Los Angeles/Hollywood).

(III) Taught math at Community Colleges (PCC, GCC, Palomar, COD).

(IV) Started teaching Physics 5 (Scientific Computing) in 1997.

(V) Two one-year sabbaticals on cryptography and scientific
visualization.

(VI) Studied Racket with Steven Bloch.

(VII) Built CS program at COD.

(VIII) http://geofhagopian.net/

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 3 / 15

http://home.adelphi.edu/~sbloch/
http://geofhagopian.net/


My Brief CV

(I) Earned MA in Mathematics from UC Davis.

(II) Worked briefly in industry (Los Angeles/Hollywood).

(III) Taught math at Community Colleges (PCC, GCC, Palomar, COD).

(IV) Started teaching Physics 5 (Scientific Computing) in 1997.

(V) Two one-year sabbaticals on cryptography and scientific
visualization.

(VI) Studied Racket with Steven Bloch.

(VII) Built CS program at COD.

(VIII) http://geofhagopian.net/

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 3 / 15

http://home.adelphi.edu/~sbloch/
http://geofhagopian.net/


Stroustrup’s Philosophy

(A summary of S’s article, Programming in an undergraduate CS curriculum)

(I) Programming is a means of making ideas into reality using computers.

(II) What universities produce 6= what industry needs.

(III) CS must emphasize software development (even at the expense of
algorithmic complexity, data structures and...subsurface luminosity).

(IV) Fashions come and go so rapidly that only a solid grasp of the
fundamentals of CS and software development has lasting value. Industry
wants software “developers” more than computer scientists and engineers.

(V) Preferably, an understanding of programming extends to several kinds of
languages (declarative, scripting, machine level) and applications
(embedded systems, text manipulation, small commercial application,
scientific computation); language bigots do not make good professionals.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 4 / 15

http://www.stroustrup.com/software.pdf


Stroustrup’s Philosophy

(A summary of S’s article, Programming in an undergraduate CS curriculum)

(I) Programming is a means of making ideas into reality using computers.

(II) What universities produce 6= what industry needs.

(III) CS must emphasize software development (even at the expense of
algorithmic complexity, data structures and...subsurface luminosity).

(IV) Fashions come and go so rapidly that only a solid grasp of the
fundamentals of CS and software development has lasting value. Industry
wants software “developers” more than computer scientists and engineers.

(V) Preferably, an understanding of programming extends to several kinds of
languages (declarative, scripting, machine level) and applications
(embedded systems, text manipulation, small commercial application,
scientific computation); language bigots do not make good professionals.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 4 / 15

http://www.stroustrup.com/software.pdf


Stroustrup’s Philosophy

(A summary of S’s article, Programming in an undergraduate CS curriculum)

(I) Programming is a means of making ideas into reality using computers.

(II) What universities produce 6= what industry needs.

(III) CS must emphasize software development (even at the expense of
algorithmic complexity, data structures and...subsurface luminosity).

(IV) Fashions come and go so rapidly that only a solid grasp of the
fundamentals of CS and software development has lasting value. Industry
wants software “developers” more than computer scientists and engineers.

(V) Preferably, an understanding of programming extends to several kinds of
languages (declarative, scripting, machine level) and applications
(embedded systems, text manipulation, small commercial application,
scientific computation); language bigots do not make good professionals.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 4 / 15

http://www.stroustrup.com/software.pdf


Stroustrup’s Philosophy

(A summary of S’s article, Programming in an undergraduate CS curriculum)

(I) Programming is a means of making ideas into reality using computers.

(II) What universities produce 6= what industry needs.

(III) CS must emphasize software development (even at the expense of
algorithmic complexity, data structures and...subsurface luminosity).

(IV) Fashions come and go so rapidly that only a solid grasp of the
fundamentals of CS and software development has lasting value. Industry
wants software “developers” more than computer scientists and engineers.

(V) Preferably, an understanding of programming extends to several kinds of
languages (declarative, scripting, machine level) and applications
(embedded systems, text manipulation, small commercial application,
scientific computation); language bigots do not make good professionals.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 4 / 15

http://www.stroustrup.com/software.pdf


Stroustrup’s Philosophy

(A summary of S’s article, Programming in an undergraduate CS curriculum)

(I) Programming is a means of making ideas into reality using computers.

(II) What universities produce 6= what industry needs.

(III) CS must emphasize software development (even at the expense of
algorithmic complexity, data structures and...subsurface luminosity).

(IV) Fashions come and go so rapidly that only a solid grasp of the
fundamentals of CS and software development has lasting value. Industry
wants software “developers” more than computer scientists and engineers.

(V) Preferably, an understanding of programming extends to several kinds of
languages (declarative, scripting, machine level) and applications
(embedded systems, text manipulation, small commercial application,
scientific computation); language bigots do not make good professionals.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 4 / 15

http://www.stroustrup.com/software.pdf


For many, “programming” has become a strange combination of
unprincipled hacking and invoking other people’s libraries (with
only the vaguest idea of what’s going on). The notions of
”maintenance” and ”code quality” are at best purely academic.
Consequently, many in industry despair over the difficulty of
finding graduates who understand “systems” and “can architect
software.”

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 5 / 15



The study of “software” includes

Software engineering on a small group scale, where a team
collaborates on different parts of a project–this practice lays the
groundwork for scaling up working on programs with millions of lines
of code.

The use of and comparison of programming languages.

Individual and group projects done at each level starting in the first
programming course and repeated with increasing difficulty in every
software course. These projects are central to teaching the beginnings
of the “higher level” project management and software engineering
skills. This is where tools such as test frame-works and source control
systems find their natural homes.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 6 / 15



The study of “software” includes

Software engineering on a small group scale, where a team
collaborates on different parts of a project–this practice lays the
groundwork for scaling up working on programs with millions of lines
of code.

The use of and comparison of programming languages.

Individual and group projects done at each level starting in the first
programming course and repeated with increasing difficulty in every
software course. These projects are central to teaching the beginnings
of the “higher level” project management and software engineering
skills. This is where tools such as test frame-works and source control
systems find their natural homes.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 6 / 15



The study of “software” includes

Software engineering on a small group scale, where a team
collaborates on different parts of a project–this practice lays the
groundwork for scaling up working on programs with millions of lines
of code.

The use of and comparison of programming languages.

Individual and group projects done at each level starting in the first
programming course and repeated with increasing difficulty in every
software course. These projects are central to teaching the beginnings
of the “higher level” project management and software engineering
skills. This is where tools such as test frame-works and source control
systems find their natural homes.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 6 / 15



Stroustrup’s Freshman Programming Class

The freshman programming class at TAMU is
based on Stroustrup’s Programming – Prin-
ciples and Practice using C++. Its pref-
ace, table of contents, lecture slides, and
other supporting materials can be found at
http://www.stroustrup.com/Programming.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 7 / 15

http://www.stroustrup.com/Programming


The approach is “depth first” in the sense that
it quickly moves through a series of basic tech-
niques, concepts, and language supports before
broadening out for a more complete understand-
ing. The first 11 chapters (which Stroustrup does
in about 6 weeks–but I took 15) cover objects,
types and values, computation, debugging, er-
ror handling, the development of a “significant
program” (a desk calculator) and its completion
through redesign, extension of functionality, and
testing. Language-technical aspects include the
design of functions and classes.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 8 / 15



Finally, interactive and file I/O are explained in
some detail. The data types used are bool, char,
int, double, string (a variable length sequence
of characters), and vector (an extensible con-
tainer of elements). That’s “the basics.” At this
point, the students can (in principle) do sim-
ple computations on streams of numbers and/or
strings – they are by now dazed and need a break!

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 9 / 15



Invariants, interface design, error handling, and the
need to reason about code to ensure correctness
are central themes of the text. These habits of
mind are not easily embraced (they were not for
me, at least) and students may not go willingly, but
these habits are essential to a sound programming
foundation. Concepts and techniques are presented
through concrete examples followed by the articula-
tion of an underlying general principle. Students of-
ten struggle grasping the importance of these prin-
ciples, which are seen as “abstract,” so repeated
application to concrete examples is essential. The
style of the concrete examples reflects the principles
and can – when imitated by the students – lead to
later understanding;

Habits of mind.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 10 / 15



Outcomes and What’s Next
1 At the end of this part of

Stroustrup’s course (the
entirety of my course),
successful students will have no
trouble with simple final exam
exercises like the one shown
here.

2 The next part of P3 (chapters
12-16) will be part of our 2nd
semester course, and are fun:
using the FLTK (Fast Light
Tool Kit, ”full tick”) graphing
libraries. Class hierarchies and
virtual functions are introduced
and the fundamentals of OOP
are presented as a simple
response to an obvious need.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 11 / 15

http://www.fltk.org/index.php


Outcomes and What’s Next
1 At the end of this part of

Stroustrup’s course (the
entirety of my course),
successful students will have no
trouble with simple final exam
exercises like the one shown
here.

2 The next part of P3 (chapters
12-16) will be part of our 2nd
semester course, and are fun:
using the FLTK (Fast Light
Tool Kit, ”full tick”) graphing
libraries. Class hierarchies and
virtual functions are introduced
and the fundamentals of OOP
are presented as a simple
response to an obvious need.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 11 / 15

http://www.fltk.org/index.php


Difficulties in Execution

True quantitative measures of success are elusive, but complaints are common:

1 The order of topics is confusing and illogical, especially to students who
have programmed before and have a firm idea of what should be taught and
in which order. The ordering based on programming needs and principles
rather than language features is seen as “wrong and unnatural.”

2 By contrast, novice programmers do not have a problem with the early use
of standard library facilities (such as iostreams, string, and vector) and do
not find the early absence of pointers and arrays strange.

3 The harping on statements of principles (to achieve correctness,
maintainability, etc.) is “over our heads” and “irrelevant for programmers.”
The latter comment proves the need for an emphasis on professionalism.
This problem can be surmounted through a close tie between concrete
examples (code) and statement of principles. In particular, we (also) present
examples of errors to teach the students to recognize both “silly errors” and
violations of principles. The students do seem to make fewer “stupid errors.”

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 12 / 15



Difficulties in Execution

True quantitative measures of success are elusive, but complaints are common:

1 The order of topics is confusing and illogical, especially to students who
have programmed before and have a firm idea of what should be taught and
in which order. The ordering based on programming needs and principles
rather than language features is seen as “wrong and unnatural.”

2 By contrast, novice programmers do not have a problem with the early use
of standard library facilities (such as iostreams, string, and vector) and do
not find the early absence of pointers and arrays strange.

3 The harping on statements of principles (to achieve correctness,
maintainability, etc.) is “over our heads” and “irrelevant for programmers.”
The latter comment proves the need for an emphasis on professionalism.
This problem can be surmounted through a close tie between concrete
examples (code) and statement of principles. In particular, we (also) present
examples of errors to teach the students to recognize both “silly errors” and
violations of principles. The students do seem to make fewer “stupid errors.”

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 12 / 15



Difficulties in Execution

True quantitative measures of success are elusive, but complaints are common:

1 The order of topics is confusing and illogical, especially to students who
have programmed before and have a firm idea of what should be taught and
in which order. The ordering based on programming needs and principles
rather than language features is seen as “wrong and unnatural.”

2 By contrast, novice programmers do not have a problem with the early use
of standard library facilities (such as iostreams, string, and vector) and do
not find the early absence of pointers and arrays strange.

3 The harping on statements of principles (to achieve correctness,
maintainability, etc.) is “over our heads” and “irrelevant for programmers.”
The latter comment proves the need for an emphasis on professionalism.
This problem can be surmounted through a close tie between concrete
examples (code) and statement of principles. In particular, we (also) present
examples of errors to teach the students to recognize both “silly errors” and
violations of principles. The students do seem to make fewer “stupid errors.”

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 12 / 15



Basic Language and Algorithmic Development

These are problems I assigned to help students find the ropes of variable
types and control structures in a rich mathematical context.

1 Write a program to solve quadratic equations of the form
ax2 + bx + c = 0. If you don’t know the quadratic formula for solving
such an expression, do some research. Researching how to solve a
problem is often necessary before a programmer can teach the
computer how to solve it. Use doubles for the user inputs of a, b, c .
There are two solutions to the equation, output both x1 and x2.

2 Create a program to find all the prime numbers between 1 and 100.
There is a classic method for doing this, called the “Sieve of
Eratosthenes.” If you don’t know that method, get on the web and
look it up. Write your program using this method. Modify the
program described in the previous exercise to take an input value max
and then find all prime numbers from 1 to max.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 13 / 15



Basic Language and Algorithmic Development

These are problems I assigned to help students find the ropes of variable
types and control structures in a rich mathematical context.

1 Write a program to solve quadratic equations of the form
ax2 + bx + c = 0. If you don’t know the quadratic formula for solving
such an expression, do some research. Researching how to solve a
problem is often necessary before a programmer can teach the
computer how to solve it. Use doubles for the user inputs of a, b, c .
There are two solutions to the equation, output both x1 and x2.

2 Create a program to find all the prime numbers between 1 and 100.
There is a classic method for doing this, called the “Sieve of
Eratosthenes.” If you don’t know that method, get on the web and
look it up. Write your program using this method. Modify the
program described in the previous exercise to take an input value max
and then find all prime numbers from 1 to max.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 13 / 15



More Advanced Algorithmic Development

Implement a little guessing game called (for some
obscure reason) “Bulls and Cows.” The program has
a vector of four different integers in the range 0 to 9
(e.g., 1234 but not 1122) and it is the user’s task to
discover those numbers by repeated guesses. Say the
number to be guessed is 1234 and the user guesses
1359; the response should be “1 bull and 1 cow”
because the user got one digit (1) right and in the
right position (a bull) and one digit (3) right but in
the wrong position (a cow). The guessing continues
until the user gets four bulls, that is, has the four
digits correct and in the correct order.

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 14 / 15



!(The End)

Geoff Hagopian (COD) Bjarne’s P3 in CS1 January 3, 2015 15 / 15


	About Me
	About Me
	About Me
	About Me
	About Me
	About Me
	About Me
	About Me
	Stroustrup's Philosophy
	Stroustrup's Philosophy
	Stroustrup's Philosophy
	Stroustrup's Philosophy
	Stroustrup's Philosophy
	My First Implementation

