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Fall 2016 : Math & Science Lecture Series

The College of the Desert School of Math and Science Presents:

The Mathematics and Algorithms of Origami

Figure 1: Robert Lang's Fiddler Crab.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: The crease pattern of the �ddler crab.

On Tuesday, October 25th in MSTC 250,
College of the Desert Math and Com-
puter Science Professor Geo� Hagopian
will give an introduction to the exciting
new science of computational origami.

From simple folds on 1-dimensional pa-
per to squash folds in hyperspace, learn
how new computer algorithms are de-
signed to create crease patterns to fold
lizards and lions; elk, shrimp, praying
mantises and the dollar velociraptor.

This is a potent new area of research and
development with applications ranging
from biology (folding proteins) to astro-
physics (deploying NASA's gliders in the
Martian atmosphere!)



Overview
1. Mathematical de�nitions for origami.

2. Universality.

3. Turn Gadget

4. Example (dodecahedron)

5. One Dimensional Flat Folding.

6. Two Dimensional Flat Folding

7. Single vertex Folding.

I Maekawa's Theorem
I Kawasaki's Theorem

8. Tesselation Folds

9. Straight Cuts

10. Treemaker.

11. Origamizer.

12. Hyperbolic Paraboloid
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Origami De�nitions

• Piece of paper: A 2-D polygon with distinguished top and bottom faces.

• Crease: line segment or curve on the paper.

• Crease pattern: a set of creases; that is, a planar graph drawn on the paper.

• Folded state: �nished origami�unfolding→ crease pattern

• Flat folding: folded state lying in a plane�if all creases are folded, the crease

pattern is called �at foldable

• Mountain crease: bottom sides touch

Valley crease: top sides touch
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More Origami Terminology

• Mountain-Valley assignment: specify which creases are mountains and
which are valleys.

• Mountain-Valley pattern: crease pattern + mountain-valley
assignment.

• Simple fold: fold along a single mountain/valley line by ±180◦
This presents the choice of how many layers to fold.

• One-layer simple fold: just top or bottom layer
All-layers simple fold: fold all the layers

• Strip: a long, narrow rectangle

• Non-simple strip folding: a strip knot
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Universality: Any shape is made by folding.

• Every connected union of polygons in 3D, each with a speci�ed visible
color (on each side), can be folded from a su�ciently large piece of
bicolor paper of any shape (say, a square.) [Demaine, Mitchell 2000]

Proof by algorithm:

I fold paper down to long narrow strip (!)
I triangulate the polygons
I choose a path visiting each triangle at least once
I cover each triangle along the path by zig-zagging parallel to next

edge, starting at opposite corner

I

http://erikdemaine.org/papers/CGTA2000/
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Turn Gadget.
A strip and be turned by any angle with the same face facing up.

• Algorithm:

I 1. Fold the strip back under itself.
I 2. Fold the lower layer at an angle which is half the turn

angle.
I 3. Fold the extra paper out of the way.

I
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Example: Planar Graph for Dodecahedron.

Triangulate
Choose a path and

cover each triangle



Example: Planar Graph for Dodecahedron.

Triangulate
Choose a path and

cover each triangle



Example: Can we �nd an e�cient path?

Triangulate the triangulation
Dot's Hamiltonian if

it has a 2-coloring.

�Boom! You've made anything!"�Erik Demaine

http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Perouz-Taslakian/
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Perouz-Taslakian/
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Is tucking under/over here a simple fold?

�Hmmm. I hadn't thought of that.� ED

Pseudo-e�ciency: if allowed to start with any long-enough strip, then
we can achieve

area(paper) = area(surface) + ε

Open: pseudopolyonomial time upper bound? Erick Demaine on this.

https://www.youtube.com/watch?v=qFeBDh-SoaA
http://tinyurl.com/h4dlb9g
https://www.youtube.com/watch?v=moPtwq_cVH8
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1-Dimensional Flat Folding
Piece of Paper = line segment

Crease = point on paper (in general,
1 dimension smaller than dimension
of paper)

Flat folding lies on a line

All crease patterns are �at-foldable:
use an alternating M-V assignment

Not all mountain-valley patterns are �at-foldable

Two folding operations:

I endfold (if end length≤neighbor)
I pleat MV or VM contains length

less than neighbors





C++ program



Random foldings:

Enter the number of segments in your sequence: 15

66-M-43-V-85-M-29-V-65-M-31-M-38-M-41-M-42-V-38-V-58-V-24-V-25-V-37-V-92-E

108-M-29-V-65-M-31-M-38-M-41-M-42-V-38-V-58-V-24-V-25-V-37-V-92-E

144-M-31-M-38-M-41-M-42-V-38-V-58-V-24-V-25-V-37-V-92-E

Enter the number of segments in your sequence: 12

98-M-5-V-89-M-29-V-69-M-53-V-92-V-65-M-83-V-87-M-29-V-98-E

182-M-29-V-69-M-53-V-92-V-65-M-83-V-87-M-29-V-98-E

222-M-53-V-92-V-65-M-83-V-87-M-29-V-98-E

261-V-65-M-83-V-87-M-29-V-98-E

279-V-87-M-29-V-98-E

279-V-156-E

279-E



2D Map Folding:

A rectangular paper with axis-parallel creases

Every crease pattern is �at foldable by zig-zagging in x then y

OPEN PROBLEM:
characterize �at-foldable mountain-valley patterns�even in 2× n!

To be simply foldable, a map folding must have at least one M/V fold
which cuts across the whole paper. Fold in 1-dimension (either
vertically or horizontally) until you can't anymore and then fold
1-dimensionally in the other direction, back and forth between the
dimensions until �at-folded.

http://www.sciencedirect.com/science/article/pii/S0925772104000483
http://web.mit.edu/ehliu/Public/ehliu/Resume/mapfolding.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2013/_extendedAbstract/431_proceeding.pdf
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Single Vertex Folding Theorems

Maekawa's Theorem (1986): The di�erence between the number of
mountain and valley creases in a �at vertex fold is always
two.(|M − V | = 2)

The monorail rotates 180◦ at each M and −180◦ at each V. Thus
180M − 180V = 360 (sum of the exterior angles of any polygon), or
M − V = 2

http://courses.csail.mit.edu/6.849/fall10/lectures/L20_images.pdf


Single Vertex Folding Theorems

Maekawa's Theorem (1986): The di�erence between the number of
mountain and valley creases in a �at vertex fold is always
two.(|M − V | = 2)

The monorail rotates 180◦ at each M and −180◦ at each V. Thus
180M − 180V = 360 (sum of the exterior angles of any polygon), or
M − V = 2

http://courses.csail.mit.edu/6.849/fall10/lectures/L20_images.pdf


Kawasaki's Theorem (1989): A collection of creases meeting at a

vertex are �at-foldable if and only if the sum of the alternate

angles around the vertex is π.

Proof: (⇒): Walk around the vertex, starting at a crease on the

�at-folded object.

Since you have to end up where you started the total of the

back-and-forth angles must be zero:

α1 − α2 + α3 − α4 + · · · − α2n = 0

Since the sum of interior angles must be 2π, we can add to this

α1 + α2 + α3 + α4 + · · ·+ α2n = 2π

To get 2α1 + 2α3 + · · ·+ 2α2n−1 = 2π

http://courses.csail.mit.edu/6.849/fall10/lectures/L20_images.pdf
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Since you have to end up where you started the total of the

back-and-forth angles must be zero:

α1 − α2 + α3 − α4 + · · · − α2n = 0

Since the sum of interior angles must be 2π, we can add to this

α1 + α2 + α3 + α4 + · · ·+ α2n = 2π

To get 2α1 + 2α3 + · · ·+ 2α2n−1 = 2π
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Vertex Fold example



Tesselation folds and Tess

http://www.papermosaics.co.uk/software.html






Single Cut Folds

http://erikdemaine.org/foldcut/


Robert Lang's Treemaker �tutorial

http://www.langorigami.com/article/treemaker
https://www.youtube.com/watch?v=hLggn-coy44


Origamizer:
A practical algorithm to fold any polyhedron.

http://www.tsg.ne.jp/TT/software/






John Horton Conway

Erik Demaine (left), Martin Demaine (center), and Bill Spight (right)
watch John Horton Conway demonstrate a card trick (June 2005)



Links related to Mathematical Origami

I Pseudopolynomial time.

I Robert Lang's Site

I National Museum of Mathematics Address by Demaine

I Erik Demaine's Papers

I Erik Demaine's: Algorithms Meet Art, Puzzles and Magic

I MIT OCW 6.849

I Handouts

I Tess

https://www.youtube.com/watch?v=qFeBDh-SoaA
http://www.langorigami.com/
https://www.youtube.com/watch?v=oUnNkHGXefA
http://erikdemaine.org/papers/
https://www.youtube.com/watch?v=WlO80TOMK7Y
https://www.youtube.com/watch?v=MDcAOTaCXHs&list=PLUl4u3cNGP62xuxL4CQpy8uo2MeM4a3YD
https://www.crcpress.com/downloads/K16368/ProjectOrigami-Handouts.pdf
http://www.papermosaics.co.uk/software.html
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