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Fall 2016 : Math & Science Lecture Series

The College of the Desert School of Math and Science Presents:

The Mathematics and Algorithms of Origami

On Tuesday, October 25 in MST!
College of the t Math and Com-
Science Professor Geoff Hago
1 introduction to the exciting
jonal origami.

Figure 1: Robert Langs Fiddler Crab, :

From simple folds on 1-dimensional pa-
per to squash folds in hyperspace, learn
how new computer

gorithms are de-

igned to create crease patterns to fold
ards and lions; clk, shrimp, praying
mantises and the dollar velociraptor.

chand
development with applications ranging

Figure 2: The creae patter of the idder rab from biology (folding proteins) to astro
physics (deploying NASA's gliders in the
Martian atmosphere!)
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o Piece of paper: A 2-D polygon with distinguished top and bottom faces.
e Crease: line segment or curve on the paper.

o Crease pattern: a set of creases; that is, a planar graph drawn on the paper.
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e Folded state: finished origami-unfolding— crease pattern

o Flat folding: folded state lying in a plane—if all creases are folded, the crease
pattern is called flat foldable

top
| "
Valley crease: top sides touch

e Mountain crease: bottom sides touch ¥ >V
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More Origami Terminology

Mountain-Valley assignment: specify which creases are mountains and
which are valleys.

Mountain-Valley pattern: crease pattern + mountain-valley
assignment.

Simple fold: fold along a single mountain/valley line by +180°
This presents the choice of how many layers to fold.

One-layer simple fold: just top or bottom layer
All-layers simple fold: fold all the layers

=R

Strip: a long, narrow rectangle | ‘

Non-simple strip folding: a strip knot




Universality: Any shape is made by folding.

e Every connected union of polygons in 3D, each with a specified visible
color (on each side), can be folded from a sufficiently large piece of
bicolor paper of any shape (say, a square.) [Demaine, Mitchell 2000]
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Turn Gadget.

A strip and be turned by any angle with the same face facing up.
« Algorithm:

» 1. Fold the strip back under itself.
» 2. Fold the lower layer at an angle which is half the turn

angle.
» 3. Fold the extra paper out of the way.

DESil‘eﬁ 5111‘11 Fold bottom layer &
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Example: Planar Graph for Dodecahedron.




Example: Planar Graph for Dodecahedron.

Choose a path and
cover each triangle

Triangulate



Example: Can we find an efficient path?
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http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Perouz-Taslakian/
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Perouz-Taslakian/

Example: Can we find an efficient path?

\\\“r)ﬁ(‘/
—N

Triangulate the triangulation

Dot’'s Hamiltonian if
it has a 2-coloring.


http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Perouz-Taslakian/
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Example: Can we find an efficient path?
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Triangulate the triangulation

Dot’'s Hamiltonian if
it has a 2-coloring.

“Boom! You've made anything!"—Erik Demaine


http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Perouz-Taslakian/
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Perouz-Taslakian/

Is tucking under/over here a simple fold?
"Hmmm. | hadn't thought of that.” ED



https://www.youtube.com/watch?v=qFeBDh-SoaA
http://tinyurl.com/h4dlb9g
https://www.youtube.com/watch?v=moPtwq_cVH8

Is tucking under/over here a simple fold?
"Hmmm. | hadn't thought of that.” ED

Pseudo-efficiency: if allowed to start with any long-enough strip, then
we can achieve

area(paper) = area(surface) + €


https://www.youtube.com/watch?v=qFeBDh-SoaA
http://tinyurl.com/h4dlb9g
https://www.youtube.com/watch?v=moPtwq_cVH8

Is tucking under/over here a simple fold?
"Hmmm. | hadn't thought of that.” ED

Pseudo-efficiency: if allowed to start with any long-enough strip, then
we can achieve

area(paper) = area(surface) + €

Open: pseudopolyonomial time upper bound? Erick Demaine on this.


https://www.youtube.com/watch?v=qFeBDh-SoaA
http://tinyurl.com/h4dlb9g
https://www.youtube.com/watch?v=moPtwq_cVH8

1-Dimensional Flat Folding

Piece of Paper = line segment
Crease = point on paper (in general,
1 dimension smaller than dimension
of paper)

Flat folding lies on a line

All crease patterns are flat-foldable:
use an alternating M-V assignment

Not all mountain-valley patterns are f

Two folding operations:

» endfold (if end length<neighbor)

» pleat MV or VM contains length
less than neighbors
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C++ program

r<Segment> createChain(int n)
r<Segment> vS;
char ch;

[

;i<onl; 4+ o
const int maxLength ;

class segment ( push_back (Segment (1+rand () $maxLength, ch) ) ;
fpublic:
Segment (short len, char ch) { 1ok (Segment (1+rand () $maxLength, "'E')); |///er
length = len;
fold = ch;

! ool doFold(int &position,
short length; pool doFold(int &position,
char fold; /// M

ector<vector<Segment> > &Seq)
bool didFold{false};

ector<segment> S = Seq[Seq.s
///if foldable at position
if (position==0 && S[O

ze()-11;
or<segment> createChain (int);
void print( r<segment> S) (

.length < S[1].length)
for(int i = 0; ze ()-1;

cout << S[il.length << '-'
cout << S[s.size ()~

s 00,8 begin()+1) 7
.fold << cout << "\npositien = " << position << endl;
length << < rEv; Seq.push back(s) ;

return true;
[poo1 dororaint aposition,

)
or<vector<segment> > &Seq); else while(ldidfold &s position<s.size()-1)
1f(S[position].length <= S[position-1].length s&
int main() { Siposition].length <= S[positiontl].length &&
srand (time (0)) 7 Siposition-1].fold != S[position].fold)
int n( 1/ he length of the replacement seg
< s(position-1
e S : - s(position
do + Sipesitio

-length
n >> n; £ the piece or
if(n<=1) cout << = s[pcsummu fold;
; while (n<=1) ; e
<Seq||\ent> S = createchain(n);
/77

1 () +positiont2) ;

" << position << er

while (foldable) {

print (Seq(Seq.s
foldable = << position << en
cin.get();

}

for(int i = 0;

return true;
: 1ot pleatable
cout << endl;
doFold (position, Seq) ; :
. nd-size - . 1 << ondls
{ < seq.eize()s while (position=s.s
i< seq.size(); ++1) ( ° . .
print (seqlil); Stposicion) lengen <= Siposicion-i] length) (
<< "\anaa
< en
- Sreras (s
get); svpammq 11.fold =
<87
pesivions

if (position==S.size()-1) return false;



Random foldings:

Enter the number of segments in your sequence: 15
66-M-43-V-85-M-29-V-65-M-31-M-38-M-41-M-42-V-38-V-58-V-24-V-25-V
108-M-29-V-65-M-31-M-38-M-41-M-42-V-38-V-58-V-24-V-25-V-37-V-92-
144-M-31-M-38-M-41-M-42-V-38-V-58-V-24-V-25-V-37-V-92-E
Enter the number of segments in your sequence: 12
98-M-5-V-89-M-29-V-69-M-53-V-92-V-65-M-83-V-87-M-29-V-98-E

182-M-29-V-69-M-53-V-92-V-65-M-83-V-87-M-29-V-98-E
222-M-53-V-92-V-65-M-83-V-87-M-29-V-98-E
261-V-65-M-83-V-87-M-29-V-98-E
279-V-87-M-29-V-98-E

279-V-156-E

279-E



2D Map Folding:

A rectangular paper with axis-parallel creases


http://www.sciencedirect.com/science/article/pii/S0925772104000483
http://web.mit.edu/ehliu/Public/ehliu/Resume/mapfolding.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2013/_extendedAbstract/431_proceeding.pdf

2D Map Folding:

A rectangular paper with axis-parallel creases

Every crease pattern is flat foldable by zig-zagging in x then y
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2D Map Folding:

A rectangular paper with axis-parallel creases
Every crease pattern is flat foldable by zig-zagging in x then y

OPEN PROBLEM:
characterize flat-foldable mountain-valley patterns—even in 2 x n!
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2D Map Folding:

A rectangular paper with axis-parallel creases
Every crease pattern is flat foldable by zig-zagging in x then y

OPEN PROBLEM:
characterize flat-foldable mountain-valley patterns—even in 2 x n!

1
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To be simply foldable, a map folding must have at least one M/V fold
which cuts across the whole paper. Fold in 1-dimension (either
vertically or horizontally) until you can't anymore and then fold
1-dimensionally in the other direction, back and forth between the
dimensions until flat-folded.


http://www.sciencedirect.com/science/article/pii/S0925772104000483
http://web.mit.edu/ehliu/Public/ehliu/Resume/mapfolding.pdf
http://icaci.org/files/documents/ICC_proceedings/ICC2013/_extendedAbstract/431_proceeding.pdf

Single Vertex Folding Theorems

Maekawa's Theorem (1986): The difference between the number of
mountain and valley creases in a flat vertex fold is always
two.(|M — V| =2)



http://courses.csail.mit.edu/6.849/fall10/lectures/L20_images.pdf

Single Vertex Folding Theorems

Maekawa's Theorem (1986): The difference between the number of
mountain and valley creases in a flat vertex fold is always

two.(|M — V| = 2)
@

The monorail rotates 180° at each M and —180° at each V. Thus
180M — 180V = 360 (sum of the exterior angles of any polygon), or
M-V =2

a (flat) polygon


http://courses.csail.mit.edu/6.849/fall10/lectures/L20_images.pdf

Kawasaki's Theorem (1989): A collection of creases meeting at a
vertex are flat-foldable if and only if the sum of the alternate
angles around the vertex is 7.
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Kawasaki's Theorem (1989): A collection of creases meeting at a
vertex are flat-foldable if and only if the sum of the alternate
angles around the vertex is 7.

Proof: (=): Walk around the vertex, starting at a crease on the
flat-folded object.



http://courses.csail.mit.edu/6.849/fall10/lectures/L20_images.pdf

Kawasaki's Theorem (1989): A collection of creases meeting at a
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i -4
Since you have to end up where you started the total of the
back-and-forth angles must be zero:

ar—axtaz—ag+--—ap =0
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Kawasaki's Theorem (1989): A collection of creases meeting at a
vertex are flat-foldable if and only if the sum of the alternate
angles around the vertex is 7.

Proof: (=): Walk around the vertex, starting at a crease on the
flat-folded object.

i -4
Since you have to end up where you started the total of the
back-and-forth angles must be zero:

ar—axtaz—ag+--—ap =0

Since the sum of interior angles must be 27, we can add to this

art+axt+azt+oag+ - +ap, =21

To get 2a; +2a3 + -+ 2app—1 =27


http://courses.csail.mit.edu/6.849/fall10/lectures/L20_images.pdf

Vertex Fold example




Tesselation folds and Tess


http://www.papermosaics.co.uk/software.html

The Miura Map Fold

Japanese astrophysicist Koryo Miura wanted a way to unfold large solar panels in
outer space. His fold also makes a great way to fold maps.

-

[ e e (2) Make 1/2 and 1/4 pinch marks on
the side (one layer only) as shown.

(1) Take a rectangle of paper and (3) Folding all layers, bring the lower

mountain-valley-mountain fold it left corner to the 1/4 line, as in the
into 1/4ths lengthwise. picture.
o~

I 1

e
parallel

parallel



(4) Fold the remainder of the strip be-
hind, making the crease parallel to
the previous crease.

S

(6) Repeat this process until the strip
is all used up. Then unfold every-
thing.

(5) Repeat, but this time use the fold

@)

from step (3) as a guide.

—— mountain

valley

Now re-collapse the model, but
change some of the mountains
and valleys. Note how the zig-
zag creases alternate from all-
mountain to all-valley. Use these
as a guide as you collapseiit...

...In the end the paper should
fold up neatly as shown to the
right. You can then pull apart
two opposite corners to easily
open and close the model.




Single Cut Folds



http://erikdemaine.org/foldcut/

e = = =

Robert Lang's Treemaker —tutorial



http://www.langorigami.com/article/treemaker
https://www.youtube.com/watch?v=hLggn-coy44

Origamizer:
A practical algorithm to fold any polyhedron.

Ny
3D mcidel 5‘\

Folding
(8 hours)

(one folded square
of paper, no cuts)

Learn how to.

« design origami

« build Transformers

« fold robot arms

« bend sheet metal

« fold proteins
sing ALGORITHMS

| 6.849: Geometric Folding Algorithms
Linkages, Origami, Polyhedra

Prof. Erik Demaine



http://www.tsg.ne.jp/TT/software/

The Hyperbolic Paraboloid

This unusual fold has been rediscovered by numerous people over the years. It
resembles a 3D surface that you may recall from Multivariable Calculus.

(1) Take a square and (2) Fold the bottom to (3) Repeat step (2) on

crease both diago- the center, but only the other three sides.
nals. Turn over. crease in the middle. Turn over.

Ly




(4) Bring the bottom to (5) Then bring the bot- (6) Repeat steps (4) and

the top crease line, tom to the nearest (5) on the other three
creasing only be- crease line. Again, sides. Turn over.
tween the diagonals. do not crease all the

way across.

(7) Now make all the creases at once. (8) Once the creases are folded, the pa-
It may help to fold the creases on per will twist into this shape, and
the outer ring first and work your you're done!
way in.



John Horton Conway

T EEL . ——
Erik Demaine (left), Martin Demaine (center), and Bill Spight (right)
watch John Horton Conway demonstrate a card trick (June 2005)




Links related to Mathematical Origami

» Pseudopolynomial time.

> Robert Lang’s Site

> National Museum of Mathematics Address by Demaine

» Erik Demaine’s Papers

> Erik Demaine’s: Algorithms Meet Art, Puzzles and Magic
» MIT OCW 6.849

» Handouts

> Tess


https://www.youtube.com/watch?v=qFeBDh-SoaA
http://www.langorigami.com/
https://www.youtube.com/watch?v=oUnNkHGXefA
http://erikdemaine.org/papers/
https://www.youtube.com/watch?v=WlO80TOMK7Y
https://www.youtube.com/watch?v=MDcAOTaCXHs&list=PLUl4u3cNGP62xuxL4CQpy8uo2MeM4a3YD
https://www.crcpress.com/downloads/K16368/ProjectOrigami-Handouts.pdf
http://www.papermosaics.co.uk/software.html
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