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A problem on the Putnam exam given December 7, 2002 involved a basketball player 

(Shanille O'Keal) taking a sequence of free throws. The player makes the first shot, 

misses the second, and makes each subsequent shot with probability equal to the frac 

tion of successful shots prior to that point. Thus, Shanille makes her third shot with 

probability 1/2. If she makes her third shot, she makes her fourth shot with probabil 

ity 2/3 and so forth. The exam asked for the probability that she made 50 of her first 

100 shots. We are interested in the probability that Shanille ever finds herself having 
missed k more shots than she has made. 

Shanille's "state" after n shots can be represented by a pair (x, y) where x is the 

number of successful shots to that point in the sequence and y is the number of unsuc 

cessful shots to that point in the sequence (so n = x -f y). If Shanille's current state 

is (x, y), her history can be represented by a lattice path from (1, 1) to (x, y) involv 

ing only rightward and upward steps where a rightward step represents a successful 

shot and an upward step an unsuccessful shot. Each edge in the lattice is naturally 
associated with a conditional probability . The horizontal edge connecting (x, y) and 

(x -f 1, y) has probability equal to the probability that the Shanille, having made x 

shots and missed y shots, makes her next shot. According to our rule, this probability 
is x/(x + y). Similarly, the vertical edge connecting (x, y) and (x, y + 1) has proba 

bility y/(x + y). The probability of her history following any particular lattice path is 

the product of the probabilities associated with the edges of the path. 

THEOREM 1. The two lattice paths connecting (x, y) and (x + 1, y + 1) are 

equiprobable. 

Proof. If we write RU for the path from (x, y) to (x + 1, y + 1) consisting of 

a rightward step followed by an upward step and UR for the path from (x, y) to 

(x + 1, y + 1) consisting of an upward step followed by a rightward step, then 

x y 
P(RU) 

= 
x + y x + y + 1 
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= _y__x 
x + y x + y + l 

= P(UR). m 

It follows from Theorem 1 that if one path can be obtained from another by trans 

posing two steps, then the two paths are equiprobable. Since any permutation (i.e., a 

reordering of the steps) of a path can be accomplished by a sequence of transpositions, 
all permutations of a path are equiprobable, a fact we record in this corollary. 

Corollary 1. Let a be a lattice path from (1, 1) to (x, y) consisting of x ? 1 

rightward and y 
? I upward steps and let o (a) be a permutation of a. Then a and 

o (a) are equiprobable. 

In particular, Corollary 1 implies that any two lattice paths with the same number 

of rightward and upward steps are equiprobable. Thus, to calculate the probability that 

Shanille arrives at any point (x, y) we need only calculate the probability of any one 

path consisting of x ? 1 rightward and y 
? I upward steps from (1,1) and count how 

many such paths there are. The path consisting of x ? 1 consecutive rightward steps 
from ( 1, 1 ) to (x, 1 ) has probability 

12 3 x-1 1 

2 3 4 x x 

The path consisting of y 
? 1 consecutive upward steps from (x, 1) to (x, y) has prob 

ability 

1 2 y-\ x\(y-\)\ 
jc + l x + 2 jc + y-l (x + y-\)l 

We record these calculations in the following theorem. 

THEOREM 2. The lattice path from (1, 1) to (x, y) consisting ofx 
? l rightward 

steps followed by y 
? 1 upward steps has probability 

. (x-l)\(y-l)\ 
P(X, y) 

= ???-7T7-. 
(x + y 

- 
1)! 

The number of lattice paths from (1, 1) to (x, y) is 

Ct!;2) 
and so the probability that Shanille winds up at state (x, y) is, remarkably, 

(x-iy.(y-l)l 1 

C::;2) (x + y-l)\ x + y-\' 

In particular, the n ? 1 states in which Shanille could be after taking n shots are all 

equiprobable and the expected number of shots made in n attempts is n/2. (Thus the 
solution to the Putnam question is 1/(100 

? 
1) = 1/99.) 

The use of lattice paths to visualize the history of our basketball player caused me to 
read with interest [1], which calculates the probability that a one dimensional random 

walk returns to the origin given that the walker starts at x = k by viewing the walker's 

progress as a lattice path. A similar analysis can be applied to our basketball player. For 
k e N, let Pk be the probability that our shooter ever finds herself having missed k more 
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shots than she has made, that is, the probability that she ever finds herself at a state of 
the form (n, n -j- k) for some n N. This is the analog of the probability addressed 

in [1]. The number of 2n + k ? 
2-length lattice paths from (1, 1) to (n, n + k) that 

intersect the line y = x + k only at the point (n, n -f- k) is the same as the number of 

2n + k ? 
2-length lattice paths from (0, 0) to (n 

? 
1, n ? 1 -+- k) that intersect the line 

y = x + k only at the point (n 
? 

1, n ? 1 + k). The article [1] denotes this number 

Ck(n 
? 

1), where 

1X l/2n-2\ 
C{(n-!) = 

-( n \ n ? l / 

is the (n 
? 

l)st Catalan Number, C2(n 
? 

l) = Ci(w), and for & > 3, the numbers 

Ck(n) satisfy the following recurrence relation (see Theorem 2 in [1]): 

Ck(n) = Ck-{(n + 1) 
- 

Ck?2(n + 1). (1) 

The probability we seek is 

oo 

Pk = 
J2 Ck(n 

~ 
VP(n> H + *> (2> 

n=\ 

The analogous sum in [1] is different because for the walker, all steps up are 

equiprobable and all steps right are equiprobable, while for the basketball player it 

is paths with the same initial and terminal point that are equiprobable. If k = 1, then 

using 

1 (In 
- 2\ 

n \ n ? 1 / 

we have 
oo 

Px - Y] C,(? - 
\)p{n, n + 1) = 

J2 T^TT^-7T 
^ ̂ (2n)(2n 

- 1) 

= 
g(_L__J_) 

= 
gizi)^ 

= log2. 
^-f \2/i 2n~l) ?-f n B (3) 

So the probability that, at some point, Shanille has missed one more shot that she has 

made is, remarkably, log 2. (Conversely, the probability that she has always made at 

least as many as she has missed is 1 ? 
log 2.) For k = 2, we have 

oo oo 1 

An evaluation of the sum in (2) for general &, however, requires a closed form 

expression for Ck(n), which is given in the following theorem. 

Theorem 3. If n, k e N then 

cr> 
C'("? = 

STI< 
""""> (5) 

Proo/ For n = 
1, 2... and k = 

0, 1, ..., let 

k (2n + k 
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and let Ck(n) be the numbers that satisfy (1) with C0(n) = 0 and 

1 (2ri^ 
Cx(n) n + \\n 

(Note that this implies that C2(n) = Cx(n + 1)). For n e N, B0(n) = C0(n) and 

1 (2n + 1\ 1 (2/1+ 1)! 1 /2n\ 
Z?,(rt) 

= 
-( 

= - - = -1 = 
C\(n). 1 J 2n + l\ n ) 2n + \ n\ (n + 1)! rc + 1 V " / 

Using similarly straightforward algebra, one can verify that for all n = 1, 2, ... and 

k = 
0, 1, ... the numbers #?(^) satisfy: 

?*(n) = ?*_,(/! + 1) 
- 

?*_2(w + 1). (6) 

This is the same recurrence relation satisfied by the numbers Ck(n). It follows that the 

numbers Bk(n) are identical to the numbers Ck(n), which is what the theorem asserts. 

Having a closed form expression for the path counts doesn't appear to be much use 

in computing the probability that the walker ever finds himself k steps to one side of 

where he started, however it does allow us to solve the analogous problem for Shanille, 
i.e., to compute (2) for general k. 

CO 

Pk = 
^2 Ck(n 

- 
l)p(n, n + k) 

n=\ 

_^ 
k f2(n-\)+k\(n-\)\(n + k-\)\ ~ 

f-?2(n- l)+k\ n-\ ) (2n + k - 1)! 

Ek 
- 

(7) 
(2n + k-2)(2n + k- 1) n=\ 

j^ \2n + k-2 2n+k-\) 

= k 
1111 

+ 
k k+l k+2 k+3 

= 
k-(-\)k+xl\og2 

The last line in this display uses the series 

(_l)?+i 
\og2 = 

J2 

Note that the sums in (3) and (4) are computed in the same manner as we compute Pk 
here. The first ten values of Pk are displayed below in Table 1. 

The numerical evidence suggests that these probabilities decline from log 2 to 1/2. 
This is in fact the case. Since the event that Shanille ever finds herself having missed 
k more shots than she has made is a superset of the event that she ever finds herself 

having missed k + 1 more shots than she has made, the probabilities certainly decline. 
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TABLE 1 : Some values of Pk 

1 .693147 
2 .613706 
3 .579442 
4 .560745 
5 .549069 
6 .541117 
7 .535364 
8 .531013 

9 .527610 

10 .524877 

Thus, lim?->oo Pk surely exists. Determining the value of this limit is a nice exercise in 

several techniques from first-year calculus. First, we note that if 

(2x + k-2)(2x+k- 1)' 

then 

2k(4x + 2k-3) 
/*'(*) 

(2x + k-2)2(2x + k- l)2 

and for any k = 
1, 2,..., fk is a decreasing function on [1, oo). Thus, we can use 

integrals to bound the series (7) above and below: 

/?OO OO /?OO 

/ fk(x)dx<J2fk(n)<Ml)+ / fk(x)dx. (8) 
'1 n=\ 

Next, we calculate the improper integrals above: 

j 
Mx)dx = 

^log(l 
+ 

^\ 
So, we have for any k = 

1,2,..., 

^(1 
+ 

l)*?f' *l^ 
+ 

ll*(1 
+ 

l) n=\ 

Finally, an application of L'H?pital's Rule shows that 

This proves our claim that the probability that Shanille ever finds herself having missed 

k more shots than she has made approaches 1/2 as k -> oo. 
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