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1. INTRODUCTION. In the game of baseball, what strategy does an outfielder 
employ to catch a fly ball? Recently, Michael McBeath and Dennis Shaffer, who 
are psychologists, and Mary Kaiser, a researcher at NASA, proposed a new model 
to explain how this task is accomplished [1]. The model, called the linear optical 
trajectoty (LOT) model, was developed and tested empirically by the three 
researchers, and it received national attention during the 1995 baseball season [4]. 
In this paper, seeking to clarify what is written in [1] and [4], we develop equations 
relating the motion of a fly ball to the motion of an outfielder utilizing the LOT 
strategy. In the process, we provide a mathematical foundation on which the LOT 
model can rest. 

To begin, let H be home plate, B the position of the ball, and F the position of 
the fielder at any point in time; see Figure 1. Define B* to be the projection of B 
onto the playing field, so that H, F, and B* are co-planar. There is a well-defined 
point I*, which is the point of intersection of the line B*F and the unique 
perpendicular to B*F through H. There is another well-defined point I, which lies 
on the line BF, directly above I*. The point I is the fielder's image of the ball. 

/ t 
/tN \ 

Figure 1 

There are three important angles defined in the right pyramid HFII*: the 
vertical optical angle a = Z B*FB, the horizontal optical angle ,l] = Z B*FH, and 
the optical trajectory projection angle t = X I*HI. We then have: 

The LOT model hypothesis. The strategy that a fielder uses to catch a fly ball is to 
follow a path that will keep the optical trajectozy projection angle t constant; this is 
equivalent to keeping the ratio (tan a)/(tan ,B ) constant. 
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In discussing the LOT model, McBeath and his colleagues write, "The LOT 
strategy discerns optical acceleration as optical curvature, a feature that observers 
are very good at discriminating," and, "If you're running along a path that doesn't 
allow the ball to curve down, then in a sense you are guaranteed to catch it." The 
LOT model apparently also applies to other situations, such as the pursuit of 
mates and prey by certain fish and houseflies. McBeath et al. also write, "[The 
LOT model] keeps the image of the ball continuously ascending in a straight line 
throughout the trajectory." [1,2] This last statement can be misleading to the 
casual reader who assumes it means that the trajectory of I must be linear. In 
Section 4, we clarify this statement and others that have been made about the 
model. 

2. THE FIELDER, HIS PREY, AND THE IMAGE OF HIS PREY. If a fielder uses 
the LOT model, is his path uniquely determined by the path of the baseball? In 
this section, we develop equations relating the positions of the fielder, the ball, and 
the image of the ball, as we seek an answer to this question. Our analysis is in 
three-dimensional space, with the playing field represented by the xy-plane. 
Without loss of generality, let home plate H be the origin, and identify the first 
and third base lines with the x-axis and the y-axis, respectively, so that a fair ball is 
one that lands in the first quadrant of the plane. The coordinates of our three 
relevant points are F = (Xf, yf, Zf ), B = (xb, Yb, Zb) and I = (xi, Yi, zi) All nine 
coordinates are functions of time t (with t = 0 representing the moment that the 
ball is hit by the batter), and Zf = 0 at all points in time. 

We define two other functions of time: 

p =- and q =-. ( 1 ) 

If the trajectory of I is linear, then p and q would be constant. However, in the 
LOT model, this is not necessary. Instead, we have the following lemma: 

Lxmma 2.1. If the LOT model is valid (i.e., if t is constant), then q2/(l + p2) is 
constant. 

Proof of Lemma 2.1: If we consider Figure 1, we see that 

ls*l2 z2 q2 

ta-n2t = lHI*l2 = x2 +y2 1 +p2 (2) 

It is helpful to first consider the case where p and q are constant, so we also 
introduce: 

Tlle strong LOT model hypothesis. The strategy that the fielder uses to catch a fly ball 
is to follow a path that keeps both p and q constant. 

For either hypothesis, the line HI* has slope p, so it follows that the line B*F 
has slope -1/p; see Figure 2. Therefore, using the definition of slope, we have 

_ _ = Yf Yb Xb -Xt 

p Xt-Xb Yf Yb 

and (3) is true at every point in time. 
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Next, we determine xi in terms of B and p. The equation of the line HI* is 
y = px, and the equation of the line B*F is y = Yb-(x-Xb)/p. The point I* is 
determined by the intersection of these two lines, and by setting these equations 
equal to each other and solving, we get 

Xb + PYb 
p2 + 1 * (4) 

Since F, B, and I are collinear, we have (zi-Zf)/(Xi-Xt) = (Zb-df)/ 
(Xb - Xt), and since Zf = 0 and zi = qxi, solving this equation for Xt gives 

Xt Xi( Z -qX )- (S) 

Combining (4) and (5) and simplifying yields 

(Zb - qXb)(Xb + PYb) 
Zb(P + 1) q(xb + PYb) (6) 

Then, combining (3) and (6) and simplifying leads to 

( PZb 4!Yb)(Xb + PYb) (7 
t Zb(p2 + 1) -q(xb +<Yb) 

Finally, if we solve (6) for q, we get 

{ Zb 8 Xt(p2 + 1) - (Xb + PYb) 
q- . (8) Xb + PYb Xt-Xb J 

What we now have, for every t > O and for every trajectory B, is a relationship 
betieen (Xt, yt) and (p, q). If we know p and q, then (6) and (7) yields Xt and yt, 
and if we know Xt and yt, then (3) and (8) give us p and q. In the next two 
sections, we use these relationships to investigate the subtle elements of the LOT 
model. 

3. THE STRONG LOT MODEL HYI?OTHESIS: CONSEQUENCES AND PROB- 
LEMS. For a given ball trajectory B, let T be the time when the ball is either 
caught or hits the ground, so that the ball is in flight for 0 < t < T and Zb = ° 

when t = T. We assume that Xb + PYb 0 as t T. 
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Theorem 3.1* For a given ball trajectozy B, and for euezy to such that 0 < to < T, 
there exists a unique fielder's path, depending on the position of the fielder at time toS 
such that the fielder can use the strong LOT model for to < t < T on that path and 
catch the ball at time T. 

Proof of Theorem 3.1: At time to the positions of the fielder and the ball are 
known. Therefore, using (3) and (8), we can determine p and q. Once these two 
constants are known, (6) and (7) specifies the unique path the fielder follows. At 
time T, we have Zb = °, and therefore 

(Zb -qXb)(Xb +PYb) qxb(xb PYb) 
f zbt p2 + 1) -q(Xb + PYb) t=T q(Xb + PYb) t=T 

Similarly, yf It= T = Yblt=t * b 

Thus, the strong LOT model works, provided, of course, that the fielder can run 
fast enough to follow his predetermined path. Can a fielder track a ball starting at 
the moment the ball is launched by the batter? McBeath and his colleagues write, 
" . . . fielders do not and cannot arbitrarily select optical angles and rates of 
change . . . but rather they maintain the initial optical projection angle, , which is 
fully determined by the perspective launch angle of the ball relative to the fielder." 
[2] This suggests that formulas can be developed for p and q, and hence , from 
the information at t - 0, and that perhaps the strong LOT strategy can be utilized 
from the moment the ball is hit. 

I*mma 3.1. Under the assumption that p and q are constant near t = 0, the values of 
p and q are uniquely detemxined at t = O by the initial uelocity of the baX and the initial 
position of the fielder. 

Proof of Lemma 3.1: Since (3) is true for all t, it is true for when the batter hits the 
baseball (t = 0), therefore we can conclude that 

Pl = Xb Xf = _ Xf (10) 

To determine q, we use (8) and L'Hopital's rule: 

f Zb \ Xf(p + 1) (Xb + PYb) 
ql,=o= lim 

tO Xb + PYb Xt-Xb / 

= lim ( )(p2 + 1) = ( ) (ll) 

Thus, (10) and (11) provide formulas for p and q as functions of the position of the 
fielder and the velocity vector of the ball at t = 0. X 

Lemma 3.1 clearly applies to the strong LOT model, but, as we see in the 
following theorem, we now have a problem with the strong LOT strategy at t = 0, 
because q does not depend on the initial position of the fielder. 

Theorem 3.2. For a given ball trajectozy B, there exist points (Xt, yt, O), called ideal 
fielders' positions, such that a fielder situated at that position when the ball is hit can 
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use the strong LOT model for 0 < t < T to detennine a unique path to catch the balZ. 
Not all fielders' positions are ideal fielders' positions. 

Proof of Theorem 3.2: Choose an arbitrary value of p. From Lemma 3.1, we can 

determine q as a function of B and p and define 

( Zb - qxb ) ( Xb PYb ) 
Xt t0 Zb( p2 + 1) -q(xb + PYb) (12) 

and 

_ 1 ( PZb qYb ) ( Xb + PYb ) ( 13 ) 

A fielder situated at (Xt, yt, O) at t = 0 can then use the unique path described by 

(6) and (7) in order to catch the ball at time T. 

Now fix A + 1 and consider a second fielder situated at (Axt, Ayf,0) when 

t = 0. This fielder has the same p and q as the first fielder (due to Lemma 3.1), 

and therefore the same running path as the first fielder, which is impossible. The 

second fielder is not in an ideal fielder's position. f 

As a practical matter, since q depends on the velocity vector of the ball, a 

fielder would need some period of time after the ball was hit to recognize what t 
is. This means an ideal fielder is ideal in another sense, because at t = 0, he can 

instantaneously discern the velocity of the baseball and begin his path to catch the 

ball. Theorem 3.1, which doesn't apply when t = 0, is a better description of how 

the strong LOT model operates, and it is simply incorrect to say that a fielder can 

use the LOT strategy from the crack of the bat. It makes more sense to say that 

fielders maintain a constant , which is determined a moment after the ball is 

launched by the batter. 

4. ONE PATH OR MANY: USING MATHEMATICS TO CLARIFY IDEAS. In the 

case where we use the LOT model and not the strong LOT model, there is no 

longer a unique path that a fielder must follow in order to achieve a linear optical 

trajectory. 

Theorem 4.1. For a given ball trajectozy B, and for evezy to such that 0 < to < T, 
there exist an infinite number of fielders' paths, such that a fielder can use the LOT 
strategy for to < t < Ton thatpath and catch the ball at time T. 

Proof of Theorem 4.1: This theorem is proved the same way as Theorem 3.1, except 

now, Es t increases, both p and q are allowed to vaxy, as long as, by Lemma 2.1, 

q2/(l + p2) remains constant. This gives an infinite number of solutions. q 

With the assumption of Lemma 3.1, we can also define ideal fielders' positions 

for the LOT model. The proof is the same as Theorem 4.2, except that now the 

path determined by (12) and (13) is not unique. 

We can use our results to examine the validity of, and explain, several state- 

ments from [1] and [2]. The benefit of the mathematical analysis is that we can 

recognize how these statements follow from the LOT model and gain a greater 
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appreciation for the model. Here are the statements: 

A.... the [LOT model] strategy in itself does not specify a unique solution. [2] 
B. ... angle of bearing appears to be used as an additional constraint to help determine the 
particular LOT chosen. [2] 
C. "[The LOT model] keeps the image of the ball continuously ascending in a straight line 
throughout the trajectoly." [1] 
D. One interesting aspect that has emerged irom research on this problem is that for identical 
launches, fielders will select different running paths, particularly near the beginning and end of 
the task. A good model of outElelder behavior should allow for this variability, as the LOT 
strategy does. Near the beginning of the trajectory [of the ball], we expect more variability 
because outfielder location has less influence on the optical trajectory. Near the end we expect 
more variability because corrective action will commence as other depth cues become available. 
[2] 

Statement A is a result of Theorem 4.1. The angle of bearing in statement B is a 
function of p and q, and since q is a function of p by Lemma 2.1, it makes sense 
to call p the fielder's beanng function. As the fielder tracks the ball, he uncon- 
sciously chooses a function p as a part of his LOT strategy. (The strong LOT 
model keeps the angle of bearing constant.) Since it is reasonable to assume that a 
player's bearings will not change in the first moment after the ball is hit, we are 
justified in keeping p constant near t = 0 in Lemma 3.1. 

Statement C seems at odds with the idea that p and q can be allowed to vary, 
which suggests that the LOT hypothesis does not allow the trajectory of I to be 
non-linear. A fielder's bearings can change, and this corresponds to a rotation 
about home plate of the right pyramid in Figure 1. For example, if the bearing 
function changes from a value of P1 to a value of P2, then the angle of rotation is 
0 = arctan P2 - arctan P1- From the rotation of axes formulas, we get 

COS 0 = 1 +P1P2 and sin 0 = P2-P1 . (15) 
\/(1 + p2) \/(1 +P2) /(1 + p2) 1/(1 +P2) 

Suppose we have a situation where first we have I1 = (xi, p1xi, q1xi) and then a 
change of bearings leading to I2 = (Xis p2Xi, q2Xi). Applying the change of vari- 
ables formula to I2, we end up with the rotated point 

1 +P2 
I2 = 1 +p2 (xi,p1xi,qlxi). (16) 

From the perspective of the fielder, the ball appears to remain on the vector 
(1, P1, q1 >, "continuously ascending on a straight line." 

Statement D is a consequence of the proof of Theorem 4.1, which explains how 
there can be many paths that keep t constant. Also, from (3), we get 

dp 1 dp Xb-Xt 
=- and - = - 2. (17) 

dXt Yf Yb dYf ( Yf Yb ) 

These derivatives are small when t is near 0, as are the derivatives for q. As a 
consequence, when (3) and (8) are used to determine p and q "near the beginning 
of the trajectory," fielders near each other have quite similar optical trajectory 
projection angles , hence "outfielder location has less influence on optical 
trajectory." Therefore, different running paths can keep p and q nearly constant, 
as the LOT model predicts. 
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The mathematics presented here shows that the LOT model is reasonable and, 
interestingly, qualitative observations made by the researchers can be supported 
quantitatively by the analysis. This analysis, though, does not prove that the LOT 
model is correct. The LOT model was developed by perceptual psychologists using 
statistical methods and it cannot be proved as we prove a theorem in mathematics. 
It also goes without saying that outfielders do not and cannot follow the LOT 
strategy exactZy, or even that outfielders follow the strategy well. In [1], McBeath et 
al. reported that one fielder appeared to use a linear optical trajectoxy for a while, 
faltered, then continued on a new optical trajectory with a different t! 

There are other, competing models, such as the optical acceleration cancellation 
(OAC) model, that have their defenders. According to the OAC model, a fielder 
acts to keep d(tan a)/dt constant, not t. Another view comes from Robert K. 
Adair, a physicist, who argues that 4'a fielder runs laterally so that the ball goes 
straight up and down from his or her view." [3] The OAC model or Adair's may be 
correct, although McBeath and his colleagues rebutted both theories with this 
statement, "Both maintenance of lateral alignment and monitoring of up and 
down ball motion require information that is not perceptually available from the 
fielder's vantage." [2] 

An example of the failure of the LOT strategy was recently presented by James 
L. Dannemiller, Timothy G. Babler, and Brian L. Babler. They write that it is 
possible for a fielder to use the LOT strategy and arrive 4'away from the ball's 
landing site at the instant the ball hits the ground." [5] This is possible if the 

fielder chooses a path such that Xb + PYb 0 as t T. In this case, Theorems 3.1 

and 4.1 are invalid and B + F when t = T. However, in this instance, H, B, and F 
would become collinear at the moment the ball hits the ground. 

5. A MATHEMATICIAN CATCHES A BASEBALL. We now go to the ball park, 
and a mathematician on the visiting team is standing in right field, waiting to catch 
some fly balls for his team. It is the bottom of the ninth inning, and the visitors are 
ahead 4-3. The ball is hit! Let's suppose that B*, the projection of the ball on the 
field, moves in a straight line and that the path of the ball is a parabolic arc. These 
are reasonable assumptions (unless we are playing in Wrigley Field, where it is 
rather windy at times) and an example of a ball?s trajectory (in feet) would be 

xb(t) = 75t, Yb(t) = 10t, zb(t) = -64t2 + 256t. (18) 

This is a ball hit to deep right field that will be in the air for 4 seconds and will 
land approximately 303 feet from home plate unless our intrepid mathematician 
gets there in time. 

Suppose that our right fielder is positioned in right-center field at the crack of 
the bat at the position (Xt, yt, Zf ) = (270, 70, 0), that it takes him 0.3 seconds to get 
his bearings, and that he plans to use the strong LOT model to catch the ball. 
Utilizing Theorem 3.1, he determines that 

p -3.694 and q 99.121. (19) 

Therefore, t 87.8°; this is practically vertical perhaps Adair has a point! Now 
that p and q are known, a unique path can be determined for our all-star to catch 
this fly ball. That path is indicated in Figure 3. 

On the very next play, inexplicably another ball is hit to right field with the 
same trajectory and the same response time for our athlete. This time, though? he 
decides to use the regular LOT strategy? computing his initial p and q as above, 
and then using p = -0.0827t- 3.6692 as his bearing function. This path? which 
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+ utilizing the strong LOT strategy (p constant) 
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Figure 3 

sends the fielder to the edge of the playing field and back, is also indicated in 
Figure 3. 

Now that there are two outs, our mathematician wonders if the next batter will 
also hit a fly ball satisfying (18). He decides to get into an ideal fielder's position. 
Although the most obvious one is (300, 40, 0)-the point where the ball has landed 
the first two times he decides to find an ideal position that corresponds to his 
current position. He computes p -3.857, using (10), and q 111.579, using (8). 
Then, making use of equations (12) and (13), and a little calculus, he determines 

Xt 291 and yt 75. (20) 
Figure 4 shows, for a ball following trajectoty (18), several ideal fielder's 

positions, depending on the choice of p. Again in Figure 3, we see out hero, 
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Figure 4 

starting at (20), pursuing the ball using the strong LOT strategy and catching it 
after 4 seconds. That's three outs game over! 
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