Math 54 - Chapters 5 and 6 Test - Spring'10
Name
Write all responses on separate paper. Do not use a calculator. Show your work for credit.

1. Joe has two types of bolts. A group of thirty of the longer bolt and eighteen of the shorter bolts weighs 300 ounces. A group of twenty five of the longer bolts with fifteen of the shorter bolts weighs 300 ounces. How much does a longer blot weigh?
2. A 17% alcohol mixture is combined with a 71% alcohol mixture to produce 50 liters of 32% alcohol mixture. How much of each ingredient is used?
3. Write an equation of the line with slope 3% passing through the point $\left(\frac{1}{2}, \frac{8}{5}\right)$.

Express your answer in the slope-intercept form: $y=m x+b$.
4. Write an equation of the line passing through the points $\left(\frac{3}{2}, \frac{5}{7}\right)$ and $\left(\frac{5}{4}, \frac{1}{14}\right)$.

Express your answer in the slope-intercept form: $y=m x+b$.
5. Write an equation for the line parallel to the line whose equation is $5 y-4 x=17$. Express your answer in the slope-intercept form: $y=m x+b$.
6. Use the graphical method to solve the system of equations for x and y :

$$
\begin{aligned}
& 4 x+3 y=24 \\
& 4 x-3 y=0
\end{aligned}
$$

7. Write the equation of the horizontal line passing through $(7.2,-4.3)$. What are the coordinates of the point where this line intersects the line $2 x+3 y=60$?
8. Solve the system of equations by graphing: | $\frac{x}{3}+\frac{y}{4}$ | $=6$ |
| ---: | :--- |
| $2 y$ | $=x+4$ |
9. Write a system of equations that is
a. dependent.
b. inconsistent.
10. Solve the system of equations either by graphing, elimination or substitution. State whether the system is independent, dependent or inconsistent.
$5 x-y=8$
$3 x+2 y=30$
11. Joe has two types of bolts. A group of thirty of the longer bolt and eighteen of the shorter bolts weighs 300 ounces. A group of twenty five of the longer bolts with fifteen of the shorter bolts weighs 250 ounces. How much does a longer blot weigh?
SOLN: It's hard to tell! Let $L=$ the weight of a longer bolts in ounces and $S=$ the weight of a shorter bolt. Then the two equations you can set up based on this information are equivalent: $30 L+18 S=300 \Leftrightarrow 25 L+15 S=250 \Leftrightarrow 5 L+3 S=50$
However, the solutions are limited by the requirement that L and S have natural number values. Since the right side is a multiple of 5 , so must the left side be a multiple of 5 . So S must be a multiple of 5 . If $S=5$ then $L=7$ is the only natural number solution where the longer bolts weight more than the shorter bolts, which makes sense. It could also be that $S=10, L=4$ or $S=15, L=1$, but then the shorter bolts would weight more.
12. A 17% alcohol mixture is combined with a 71% alcohol mixture to produce 50 liters of 32% alcohol mixture. How much of each ingredient is used?
SOLN: Let $x=$ the amount of 17% solution in the mixture. Then $50-x$ is the amount of 71% alcohol solution in the mixture. Now the pure alcohol in the mixture must come from one of these ingredients and must be 32% of $50=16$ liters. Thus $0.17 x+0.71(50-x)=16$ Expanding and collecting terms on the left side we have the equivalent equation
$35.5-0.54 x=16$ so that $0.54 x=19.5$ whence $x=1950 / 54=325 / 9$ liters of 17% solutions and so there must be $125 / 9$ liters of the 71% solution.
13. Write an equation of the line with slope 3% passing through the point $\left(\frac{1}{2}, \frac{8}{5}\right)$.

Express your answer in the slope-intercept form: $y=m x+b$.
SOLN: Plugging into the point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$ we have
$y-\frac{8}{5}=0.03\left(x-\frac{1}{2}\right) \Leftrightarrow y=\frac{3}{100} x-\frac{3}{200}+\frac{320}{200} \Leftrightarrow y=\frac{3}{100} x+\frac{317}{200}$
4. Write an equation of the line passing through the points $\left(\frac{3}{2}, \frac{5}{7}\right)$ and $\left(\frac{5}{4}, \frac{1}{14}\right)$.

Express your answer in the slope-intercept form: $y=m x+b$.
SOLN: Plugging into the slope formula, $m=\frac{\frac{5}{7}-\frac{1}{14}}{\frac{3}{2}-\frac{5}{4}}=\frac{\frac{10}{14}-\frac{1}{14}}{\frac{6}{4}-\frac{5}{4}}=\frac{9}{14}\left(\frac{4}{1}\right)=\frac{18}{7}$. Then plug into the
point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$ we have
$y-\frac{5}{7}=\frac{18}{7}\left(x-\frac{3}{2}\right) \Leftrightarrow y=\frac{18}{7} x-\frac{27}{7}+\frac{5}{7} \Leftrightarrow y=\frac{18}{7} x-\frac{22}{7}$
5. Write an equation for the line parallel to the line whose equation is $5 y-4 x=17$.

Express your answer in the slope-intercept form: $y=m x+b$.
SOLN: $5 y-4 x=17$ is equivalent to $y=\frac{4}{5} x+\frac{17}{5}$ whose slope is $4 / 5$. Thus any line parallel to this line will have a slope of $4 / 5$ and will be in the form $y=\frac{4}{5} x+b$.
6. Use the graphical method to solve the system of equations for x and y :

$$
\begin{aligned}
& 4 x+3 y=24 \\
& 4 x-3 y=0
\end{aligned}
$$

SOLN: Evidently, the lines intersect at $(3,4)$:

7. Write the equation of the horizontal line passing through (7.2, -4.3). What are the coordinates of the point where this line intersects the line $2 x+3 y=60$?
SOLN: The equation of the horizontal line passing through $(7.2,-4.3)$ is $y=-4.3$ and to find the x coordinate of the point where this line intersects $2 x+3 y=60$, simply substitute $y=-4.3$ and solve for $x: 2 x+3(-4.3)=60$ so that $2 x=72.9$ or $x=36.45$ and the point of intersection is $(36.45,-4.3)$

8. Solve the system of equations by graphing: | $\frac{x}{3}+\frac{y}{4}$ | $=6$ |
| ---: | :--- |
| $2 y$ | $=x+4$ |

SOLN: Evidently, the lines intersect at $(12,8)$.

9. Write a system of equations that is
a. dependent.

SOLN: $y=x$ and $2 x-2 y=0$ are equivalent equations, so the system is dependent.
b. inconsistent.

SOLN: $y=x$ and $y=x+1$ are parallel, non-intersecting lines: an inconsistent system.
10. Solve the system of equations either by graphing, elimination or substitution. State whether the system is independent, dependent or inconsistent.

$$
5 x-y=8
$$

$3 x+2 y=30$
SOLN. Multiply both sides of the first equation by 2 to get a system with opposite coefficients for y. Then equate the sum of the left hand sides with the sum of the right hand sides, thus eliminating y :

$$
\begin{gathered}
10 x-2 y=16 \\
3 x+2 y=30 \\
\hline 13 x+0=46
\end{gathered}
$$

So $x=46 / 13$. Substitute this back into the first equation above and solve for y $5\left(\frac{46}{13}\right)-y=8 \Leftrightarrow y=\frac{230}{13}-8 \Leftrightarrow y=\frac{126}{13}$ So the solution is $(x, y)=\left(\frac{46}{13}, \frac{126}{13}\right)$.

