Math 54 - Elementary Algebra - Chapters 1 and 2 Test - Spring '10 Name: \qquad
Directions: Show all work for credit. Write all responses on separate paper. Do not use a calculator.

1. List the elements of each set in roster form.
a. $\{x \mid x$ is a prime number less than 10 and x is factor of 1100$\}$
b. $\{x \mid x$ is a prime number less than 10 or x is factor of 1100$\}$
2. Factor each number as a product of prime numbers:
a. 40
b. 3850
3. Simplify the expression. Remember to follow the order of operations, one small step at a time.
a. $\frac{10-2(3-17)}{10-4 \cdot 2+5}$
b. $2-5[2-5(2 x-5)]$
4. The following table gives the number of fatal crashes involving drivers aged 15-20 in the United States in each of the years listed

Year	2002	2003	2004	2005	2006	2007
Fatal Crashes	7970	7590	7600	7160	7180	6670

On the basis of these data, a statistician suggests that the following formula can be used to approximate the number of young drivers, N, involved in fatal crashes:
$N=150 x^{3}-1130 x^{2}+2350 x+6220$
where $x=0$ corresponds to 2002, $x=1$ corresponds to 2003, and so on.
a. Use this formula to compute N for the year 2006 .
b. What is the error in the formula's approximation of N ?
5. Simplify the expression $b^{3}-2 a(a+b)-b\left(2 a+b^{2}\right)$ by writing a sequence of equal, successively simpler expressions.
6. Factor the expression $6 x^{3}+9 x$ by factoring out the greatest common factor.
7. Evaluate $x y^{2}-2 x^{2}$ for $x=-1.7$ and $y=1.1$ and round to the nearest tenth.
8. Let n represent the number and express the quantity that is the product of 5 less than twice the number with seven more than three times the number.
9. Write an equation that says that seventeen less than a number is eight more than four times the number.
10. Express the total value, in cents, of a dollar and Q quarters.

Math 54 - Elementary Algebra - Chapters 1 and 2 Test Solutions - Spring '10

1. List the elements of each set in roster form.
a. $\{x \mid x$ is a prime number less than 10 and x is factor of 1100$\}$

SOLN: $1100=2^{2} * 5^{2} * 11$ so this set is $\{2,5\}$
b. $\{x \mid x$ is a prime number less than 10 or x is factor of 1100$\}$

SOLN: $\{1,2,3,4,5,7,10,11,20,22,25,44,50,55,100,110,200,220,275,550,1100\}$
2. Factor each number as a product of prime numbers:
a. $40=2^{3} * 5$
b. $3850=2 * 5^{2} * 7 * 11$
3. Simplify the expression. Remember to follow the order of operations, one small step at a time.
a. $\frac{10-2(3-17)}{10-4 \cdot 2+5}=\frac{10-2(-14)}{10-8+5}=\frac{10+28}{2+5}=\frac{38}{7}=5 \frac{3}{7}=5 . \overline{428571}$
b. $2-5[2-5(2 x-5)]=2-5(2-10 x+25)=2-5(27-10 x)=2-135+50 x=50 x-133$
4. The following table gives the number of fatal crashes involving drivers aged 15-20 in the United States in each of the years listed

Year	2002	2003	2004	2005	2006	2007
Fatal Crashes	7970	7590	7600	7160	7180	6670

On the basis of these data, a statistician suggests that the following formula can be used to approximate the number of young drivers, N, involved in fatal crashes:
$N=150 x^{3}-1130 x^{2}+2350 x+6220$
where $x=0$ corresponds to 2002, $x=1$ corresponds to 2003, and so on.
a. Use this formula to compute N for the year 2006.

SOLN:

$$
\begin{aligned}
N & =150(4)^{3}-1130(4)^{2}+2350(4)+6220=150(64)-1130(16)+9400+6220 \\
& =9600-18080+13620=-8480+15620=7140
\end{aligned}
$$

b. What is the error in the formula's approximation of N ?

SOLN: The error is an underestimate by 40 . This is approximately a 0.6% of the value.
5. Simplify the expression $b^{3}-2 a(a+b)-b\left(2 a+b^{2}\right)$ by writing a sequence of equal, successively simpler expressions.
SOLN: $b^{3}-2 a(a+b)-b\left(2 a+b^{2}\right)=b^{3}-2 a^{2}-2 a b-2 a b-b^{3}=-2 a^{2}-4 a b$
6. Factor the expression $6 x^{3}+9 x$ by factoring out the greatest common factor.

SOLN: $6 x^{3}+9 x=3 x\left(2 x^{2}+3\right)$
7. Evaluate $x y^{2}-2 x^{2}$ for $x=-1.7$ and $y=1.1$ and round to the nearest tenth.

AOLN: $-1.7(1.1)^{2}-2(-1.7)^{2}=-1.7(1.21)-2(2.89)=-2.057-5.78=-7.837 \approx-7.8$
8. Let n represent the number and express the quantity that is the product of 5 less than twice the number with seven more than three times the number.
SOLN: $(2 n-5)(3 n+7)$
9. Write an equation that says that seventeen less than a number is eight more than four times the number. SOLN: $n-17=4 n+8$
10. Express the total value, in cents, of a dollar and Q quarters. SOLN: 100+25Q.

