Fall 2014 : 10/9/14
Exam 2: Chapters 5 \& 6 - Solutions

1. (15 points) Simplify each expression. Answers for a) and (b) should contain positive exponents only. In
(c) write the answer in scientific notation.
(a) $-4^{3}-7^{0}+7^{1}=-64-1+7=-58$
(b) $\frac{\left(x^{3}\right)^{-2}\left(x^{-1}\right)^{5}}{\left(x^{-3}\right)^{-4}}=\frac{x^{-6} x^{-5}}{x^{12}}=\frac{x^{-11}}{x^{12}}=\frac{1}{x^{23}}$
(c) $\frac{1.5 \times 10^{-2}}{7.5 \times 10^{-8}}=\frac{1.5}{7.5} \times \frac{10^{-2}}{10^{-8}}=0.2 \times 10^{6}=2 \times 10^{5}$
2. (16 points) Given two polynomials, $A=7 x^{2}+3 x-6$ and $B=5 x^{2}-4 x+7$.
(a) Substitute and simplify $A-B=7 x^{2}+3 x-6-\left(5 x^{2}-4 x+7\right)=2 x^{2}+7 x-13$
(b) Substitute and simplify $A \cdot B=\left(7 x^{2}+3 x-6\right)\left(5 x^{2}-4 x+7\right)=35 x^{4}-28 x^{3}+15 x^{3}+49 x^{2}-12 x^{2}-$ $30 x^{2}+24 x+21 x-42=35 x^{4}-13 x^{3}+7 x^{2}+45 x-42$
To be sure, try the grid method:

\times	$7 x^{2}$	$3 x$	-6
$5 x^{2}$	$35 x^{4}$	$15 x^{3}$	$-30 x^{2}$
$-4 x$	$-28 x^{3}$	$-12 x^{2}$	$24 x$
7	$49 x^{2}$	$21 x$	-42

(c) Evaluate both A and B when $x=2$.

SOLN: $A=7 \cdot 2^{2}+3 \cdot 2-6=28+6-6=28, B=5 \cdot 2^{2}-4 \cdot 2+7=20-8+7=19$
(d) Evaluate both $A-B$ and $A \cdot B$ when $x=2$. This should be a check for parts (a) and (b).

SOLN: When $x=2, A-B=2 \cdot 2^{2}+7 \cdot 2-13=8+14-13=9$, consistent with $28-19=9$.
Also, when $x=2, A \cdot B=35 \cdot 2^{4}-13 \cdot 2^{3}+7 \cdot 2^{2}+45 \cdot 2-42$
$=35 \cdot 16-13 \cdot 8+7 \cdot 4+45 \cdot 2-42=560-104+28+90-42=532$. Also, $28 \cdot 19=532$.
3. (14 points) Do long division. Relate the dividend, divisor, quotient and remainder in an equation.
(a) $\frac{3 x^{2}-10 x+7}{3 x-2}$
(b) $\frac{2 x^{3}-7 x^{2}+6 x+10}{x+1}$

$$
\begin{array}{r}
x-\frac{8}{3} \\
3 x - 2 \longdiv { 3 x ^ { 2 } - 1 0 x + 7 } \\
3 x^{2}-2 x \\
\hline-8 x+7 \\
-8 x+\frac{16}{3} \\
\hline \frac{5}{3}
\end{array}
$$

Thus $3 x^{2}-10 x+7=(3 x-2)\left(x-\frac{8}{3}\right)+\frac{5}{3}$

$$
x+1 \begin{array}{r}
2 x^{2}-9 x+15 \\
\begin{array}{r}
2 x^{3}-7 x^{2}+6 x+10 \\
2 x^{3}+2 x^{2}
\end{array} \\
\hline-9 x^{2}+6 x \\
-9 x^{2}-9 x \\
\hline 15 x+10 \\
15 x+15 \\
\hline-5
\end{array}
$$

$$
2 x^{3}-7 x^{2}+6 x+10=(x+1)\left(2 x^{2}-9 x+15\right)-5
$$

4. (15 points) Factor completely.
(a) $3 y^{2}+3 y-18=3\left(y^{2}+y-6\right)=3\left(y^{2}+(3 y-2 y)-6\right)=3[y(y+3)-2(y+3)]=3(y+3)(y-2)$
(b) $4 x^{2}-9=(2 x)^{2}-3^{2}=(2 x)^{2}+6 x-6 x+3^{2}=2 x(2 x+3)-3(2 x+3)=(2 x+3)(2 x-3)$
(c) $2-54 A^{3}=2\left(1-27 A^{3}\right)=2\left(1^{3}-(3 A)^{3}\right)=2(1-3 A)\left(1+3 A+9 A^{2}\right)$
5. (15 points) Use the zero product principle to find all solutions for each equation.
(a) $x^{2}+2 x-63=0 \Leftrightarrow x^{2}+9 x-7 x-63=0 \Leftrightarrow x(x+9)-7(x+9)=0 \Leftrightarrow(x+9)(x-7)=0$ $\Leftrightarrow x=7$ or $x=-9$.
(b) $2 t^{2}=7 t+15 \Leftrightarrow 2 t^{2}-7 t-15=0 \Leftrightarrow 2 t^{2}-10 t+3 t-15=0 \Leftrightarrow 2 t(t-5)+3(t-5)$
$\Leftrightarrow(t-5)(2 t+3)=0 \Leftrightarrow t=5$ or $t=-\frac{3}{2}$
(c) $4 y^{3}=25 y \Leftrightarrow 4 y^{3}-25 y=0 \Leftrightarrow y\left(4 y^{2}-25\right)=0 \Leftrightarrow y(2 y-5)(2 y+5)=0 \Leftrightarrow y=0$ or $y= \pm \frac{5}{2}$
6. (10 points) One number is five more than another number. The product of the numbers is 84 . Use the algebraic method to find all such numbers.
SOLN: Let $x=$ the smaller number. Then $x+5=$ the larger number and $x(x+5)=84$ so $x^{2}+5 x-84=$ $0 \Leftrightarrow(x-7)(x+12)=0 \Leftrightarrow x=-12$ or $x=7$ So the numbers could be -12 and -7 or 7 and 12 .
7. (15 points) A ball is thrown into the air with an upward velocity of 20 feet per second from a building 50 feet high. The equation for the height h of the ball above the ground at time t is $h=50+20 t-16 t^{2}$
(a) What is the height of the ball at $t=2$ seconds?

SOLN: At $t=2, h=50+20(2)-16(4)=90-64=26$ feet.
(b) Write an equation whose solution gives the time when the ball hits the ground.
$h=0 \Leftrightarrow 50+20 t-16 t^{2}=0$
(c) Find the time when the ball hits the ground.
$16 t^{2}-20 t-50=0 \Leftrightarrow 2\left(8 t^{2}-10 t-25\right)=0$
$\Leftrightarrow 2\left(8 t^{2}+10 t-20 t-25\right)=0 \Leftrightarrow 2(2 t(4 t+5)-5(4 t-5))=0$
$\Leftrightarrow 2(2 t-5)(4 t+5)=0 \Rightarrow t=\frac{5}{2}=2.5$ seconds

