Math 40 - Exercise 4.2\#6:

Let $t=$ the number of years since 1990 and $s=$ sales of something or other in that year.
The following data are tabulated:

t	0	1	2	3	4
S	54	82	194	446	726

Our task is to find an equation for the parabola that fits the data for $t=1,2,3$ and then see how well that fits the other two data.

We seek a, b and c so that $S=a t^{2}+b t+c$ fits the middle three points:
Rewrite the equation in the equivalent form $t^{2} a+t b+c=S$ and plug in the data pairs to produce the 3X3 linear system in a, b and c :

$$
\begin{aligned}
a+b+c & =82 \\
4 a+2 b+c & =194 \\
9 a+3 b+c & =446
\end{aligned}
$$

Eliminating c from first the first and second equations and then from the first and third equations, we have

$$
\begin{aligned}
3 a+b & =102 \\
8 a+2 b & =364
\end{aligned}
$$

This is easily solved: $a=70$ and $b=-98$.
Plug back into $a+b+c=82$ and deduce $c=110$.
Having the parameter values for a, b, and c allows us to, somewhat gratuitously, compute
$h=-b / 2 a=98 / 140=49 / 70=7 / 10$ and
$k=c-b^{2} /(4 a)=110-9604 / 280=110-2401 / 70=(1100-343) / 10=75.7$
Thus $S=70 t^{2}-98 t+110=70(t-0.7)^{2}+75.7$ Factored form would easy now since the vertex form is easily solved for the zeros. But that might be overly gratuitous!

Note that $S(0)=110$ is pretty far off the tabulated value of 54 and
$S(4)=70(3.3)^{2}+75.7=70(10.89)+75.7=762.3+75.7=838$ is a bit more than the tabulated value of 726.

A visualization of the parabola and the data follows:

