Directions: Show your work for credit. Write all responses on separate paper. No calculators.

- 1. Consdier $f(x) = \left(x \frac{4}{5}\right)^2 + \frac{9}{25}$
 - a. Simplify f(0) b. Simplify $f(\frac{4}{5})$ c. Simplify $f(\frac{8}{5})$ d. What is the range of f?
- 2. The graph below models A, the number of acres of forest "in fuel condition" over a 100-year period, under one forest management scenario.

Which one of the following function formulas best describes A as a function of t?

a.
$$A(t) = 4000 - 170t$$

b.
$$A(t) = \frac{12000}{t}$$

a.
$$A(t) = 4000 - 170t$$
 b. $A(t) = \frac{12000}{t}$ c. $A(t) = \frac{240000}{t^2}$ d. $A(t) = (t - 60)^2$

d.
$$A(t) = (t-60)^2$$

3. The table below shows the intensity of sound I from a foghorn as inversely proportional to the square of the distance d^2 from the foghorn.

d	0.5	1	2
Ι	100528	25132	6283

- a. Compute the products of the square of the distance d^2 and the sound intensity I. What is the constant of proportionality?
- b. Express the intensity of sound I as a function of its distance d from the foghorn.
- 4. The power P produced by a coal burning power plant (measured in Megawatts) is a function of the amount of anthracite A burned (measured in thousands of tons.)

If P is directly proportional to A and P(500) = 200, find a formula for P(A).

- 5. Make a table of at least 7 (x, y) pairs for $f(x) = \frac{12}{(x-2)^2 + 1}$ and construct careful graph for f.
- 6. Make a table of at least 7 (x, y) pairs for $f(x) = 1 \sqrt[3]{x-1}$ and construct careful graph for f.
- 7. Make a table of at least 7 (x, y) pairs for f(x) = 3 |x 3| and construct careful graph for f.
- 8. Consider the function $f(x) = \frac{1}{\sqrt{(x-1)(x-3)}}$.
 - a. Are there any input values that lead to division by zero? If so, what are they?
 - b. Are there any input values that lead to the square root of a negative number?
 - c. What is the domain of the function?

Math 40 - Solutions For Chapter 5 Test – Spring '10

1. (a)
$$f(0) = \left(0 - \frac{4}{5}\right)^2 + \frac{9}{25} = \frac{16}{25} + \frac{9}{25} = 1$$
 (b) $f\left(\frac{4}{5}\right) = \left(\frac{4}{5} - \frac{4}{5}\right)^2 + \frac{9}{25} = \frac{9}{25}$

(b)
$$f\left(\frac{4}{5}\right) = \left(\frac{4}{5} - \frac{4}{5}\right)^2 + \frac{9}{25} = \frac{9}{25}$$

(c)
$$f\left(\frac{8}{5}\right) = \left(\frac{8}{5} - \frac{4}{5}\right)^2 + \frac{9}{25} = \frac{16}{25} + \frac{9}{25} = 1$$

(c)
$$f\left(\frac{8}{5}\right) = \left(\frac{8}{5} - \frac{4}{5}\right)^2 + \frac{9}{25} = \frac{16}{25} + \frac{9}{25} = 1$$
 (d) Vertex at $(4/5, 9/25)$ so the range is $\left[\frac{9}{25}, \infty\right)$

SOLN: The coordinate pairs (20,600) and

(40,150) fit the function
$$A(t) = \frac{240000}{t^2}$$
, not the

others.
$$A(20) = \frac{240000}{400} = 600$$
 and

$$A(40) = \frac{240000}{1600} = 150$$

- 3. The table shows the intensity of sound *I* from a foghorn as inversely proportional to the square of the distance d^2 from the foghorn. a. Compute the products of the square of the distance d^2 and the
- 0.5 I 100528 25132 6283

sound intensity *I*. What is the constant of proportionality?
SOLN:
$$d^2I = (0.5)^2100528 = 100528/4 = 25132$$

 $d^2I = (1)^225132 = 25132$
 $d^2I = (2)^26283 = 25132$

The constant of proportionality is 25132

b. Express the intensity of sound *I* as a function of its distance *d* from the foghorn. SOLN: $I = f(d) = 25132/d^2$. That's 25132 divided by the square of d.

$$4. \quad P(A) = \frac{2A}{5}$$

5. $f(x) = \frac{12}{(x-2)^2 + 1}$ Here's a table of values:

$$\frac{x}{f(x)} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 \\ 5 & 2.4 & 6 & 12 & 6 & 2.4 \end{vmatrix}$$
 and a graph:

J(x) 3 2 1	AY 3-	
3 -7 -6 -5 -4 -3 -2	1 0 1 2 3 4 5	X 6 7 8 9 10

- 8. (a) Yes, x = 1 and x = 3 lead to division by zero.
 - (b) If 1 < x < 3 then we have the square root of a negative number.
 - (c) The domain of the function is $\{x \mid x < 1 \text{ or } x > 3\}$.