Math 40 - Chapters 6 and 7 Test - Spring '10
Name: \qquad
Directions: Show all work for credit. Write all responses on separate paper.

1. Simplify each of the following:
a. $\left(\frac{5}{2}\right)^{-4}$
b. $\left(-\frac{27}{32}\right)^{4 / 3}$
c. $\left(\frac{27}{125}\right)^{-3 / 4}$
2. Simplify: $\left(-\frac{A^{-3}}{2 B^{2}}\right)^{4}\left(\frac{3 B^{3}}{A^{-6}}\right)^{3}$.
3. If $G(u)=\left(\frac{u+3}{2}\right)^{-2 / 3}$, find u so that $G(u)=\frac{1}{4}$.
4. Find a power function (of the form, $f(x)=k x^{p}$) that is consistent with the table below.

x	$\frac{5}{16}$	$\frac{5}{8}$	1	$\frac{5}{2}$
$f(x)$	$\frac{16}{5}$	$\frac{4}{5}$	$\frac{5}{16}$	$\frac{1}{20}$

5. Write an equation for the circle in the $x-y$ plane with a diameter from $(3,6)$ to $(3,10)$.
6. Find the center and radius of the circle described by the equation $x^{2}-2 x+y^{2}+8 y=26$
7. The line segment from $(0,0)$ to $(11,5)$ is the diameter of a circle. Find an equation for the line tangent to the circle at $(0,0)$.
8. Write an equivalent expression without a radical or rational exponent in the denominator:
a. $\frac{1}{3-\sqrt{x}}$
b. $\frac{1}{\sqrt[3]{4 x^{5}}}$
9. Use the method of equating squares to find both solutions to the equation: $\sqrt{7 x+11}-\sqrt{5 x-1}=2$. Hint: Isolate a square root and equate squares twice.
10. The National Marine Fisheries Service has concluded that the population of sockeye salmon at Ozette Lake has been declining from a population of about 1000 since 1977 to the point where only about 600 fish returned to spawn in 1997. Let t represent the number of years since 1977.
a. Write a linear function (in the form $P=m t+b$) modeling the population over this 20-year period. You'll need to figure out the slope, m and the y-intercept, b.
b. In what year does the linear model predict the population will be down to one fish?
c. Write an exponential function (in the form $\left.P=P_{0}(1+r)^{t}\right)$
d. In what year does the exponential model predict the population will be down to one fish? (you will need a logarithm to solve this?)
11. Find an exponential function (of the form $y=P(1+r)^{x}$) through points $(x, y)=(0,2)$ and $(3,5)$.
12. Solve for the unknown (remember to show steps):
a. Solve for $y: \quad \log _{3} y=-5$.
b. Solve for k : $20\left(1+\frac{0.06}{24}\right)^{24 k}=400$.

Solutions For Chapter 6 and 7 Test

1. Simplify each of the following:
a. $\left(\frac{5}{2}\right)^{-4}=\frac{2^{4}}{5^{4}}=\frac{16}{625}$
b. $\left(-\frac{27}{32}\right)^{4 / 3}=\left(-\frac{3^{3}}{2^{5}}\right)^{4 / 3}=-\frac{\left(3^{3}\right)^{4 / 3}}{\left(2^{5}\right)^{4 / 3}}=-\frac{3^{4}}{2^{20 / 3}} \frac{2^{1 / 3}}{2^{1 / 3}}=\frac{81 \sqrt[3]{2}}{128}$
c. $\left(\frac{27}{125}\right)^{-3 / 4}=\left(\frac{3^{3}}{5^{3}}\right)^{-3 / 4}=\frac{5^{9 / 4}}{3^{9 / 4}}=\frac{25 \sqrt[4]{5}}{9 \sqrt[4]{3}} \frac{\sqrt[4]{27}}{\sqrt[4]{27}}=\frac{25 \sqrt[4]{135}}{27}$
2. Simplify: $\left(-\frac{A^{-3}}{2 B^{2}}\right)^{4}\left(\frac{3 B^{3}}{A^{-6}}\right)^{3}=\frac{A^{-12}\left(27 B^{9}\right)}{16 B^{8} A^{-18}}=\frac{27 A^{6} B}{16}$.
3. If $G(u)=\left(\frac{u+3}{2}\right)^{-2 / 3}$, find u so that $G(u)=\frac{1}{4}$.

$$
\left(\frac{u+3}{2}\right)^{-2 / 3}=\frac{1}{4} \Leftrightarrow \frac{u+3}{2}=\left(\frac{1}{4}\right)^{-3 / 2} \Leftrightarrow \frac{u+3}{2}=8 \Leftrightarrow u=13
$$

4. Find a power function (of the form, $f(x)=k x^{p}$) that is consistent with the table below.
SOLN: Note that $f(1)=\frac{5}{16} \Rightarrow k=\frac{5}{16}$. We can then use any one of the remaining in/out pairs to find p.

x	$\frac{5}{16}$	$\frac{5}{8}$	1	$\frac{5}{2}$
$f(x)$	$\frac{16}{5}$	$\frac{4}{5}$	$\frac{5}{16}$	$\frac{1}{20}$

$$
f\left(\frac{5}{16}\right)=\frac{5}{16}\left(\frac{5}{16}\right)^{p}=\frac{16}{5} \Leftrightarrow\left(\frac{5}{16}\right)^{p}=\left(\frac{16}{5}\right)^{2} \Rightarrow p=-2
$$

5. Write an equation for the circle in the $x-y$ plane with a diameter from $(3,6)$ to $(3,10)$.

SOLN: Clearly the center of the circle is at $(3,8)$ and the radius is 2 . So the equation is $(x-3)^{2}+(y-8)^{2}=4$
6. Find the center and radius of the circle described by the equation $x^{2}-2 x+y^{2}+8 y=26$
$x^{2}-2 x+y^{2}+8 y=26 \Leftrightarrow x^{2}-2 x+1+y^{2}+8 y+16=26+1+16$

$$
\Leftrightarrow(x-1)^{2}+(y+4)^{2}=43
$$

So the center is $(1,-4)$ and the radius is $\sqrt{43}$.
7. The line segment from $(0,0)$ to $(11,5)$ is the diameter of a circle. Find an equation for the line tangent to the circle at $(0,0)$.
SOLN: The center is $(11 / 2,5 / 2)$ and the radius is $\sqrt{\left(\frac{5}{2}\right)^{2}+\left(\frac{11}{2}\right)^{2}}=\sqrt{\frac{25+121}{4}}=\frac{\sqrt{146}}{2}$, but we don't need to know those things. It is sufficient that the tangent line is perpendicular to the radius line at that point. The slope of the diameter is $11 / 5$, so the tangent line has slope $-5 / 11$ and passes through $(0,0)$, so the equation is $y=-\frac{5}{11} x$
8. Write an equivalent expression without a radical or rational exponent in the denominator:
a. $\frac{1}{(3-\sqrt{x})} \frac{(3+\sqrt{x})}{(3+\sqrt{x})}=\frac{3+\sqrt{x}}{9-x}$
b. $\frac{1}{\sqrt[3]{4 x^{5}}} \frac{\sqrt[3]{2 x}}{\sqrt[3]{2 x}}=\frac{\sqrt[3]{2 x}}{2 x^{2}}$
9. Use the method of equating squares to find both solutions to the equation: $\sqrt{7 x+11}-\sqrt{5 x-1}=2$.

Hint: Isolate a square root and equate squares twice.

$$
\begin{aligned}
(\sqrt{7 x+11})^{2} & =(2+\sqrt{5 x-1})^{2} \Leftrightarrow 7 x+11=4+4 \sqrt{5 x-1}+5 x-1 \\
\text { SOLN: } \quad & \Leftrightarrow 2 x+8=4 \sqrt{5 x-1} \Rightarrow(x+4)^{2}=4(5 x-1) \\
& \Leftrightarrow x^{2}-12 x+20 \Leftrightarrow(x-10)(x-2)=0 \Leftrightarrow x=10 \text { or } x=2
\end{aligned}
$$

10. The National Marine Fisheries Service has concluded that the population of sockeye salmon at Ozette Lake has been declining from a population of about 1000 since 1977 to the point where only about 600 fish returned to spawn in 1997. Let t represent the number of years since 1977.
a. Write a linear function (in the form $P=m t+b$) modeling the population over this 20-year period. You'll need to figure out the slope, m and the y-intercept, b.
SOLN: The slope is $\frac{600-1000}{20-0}=-20$ so the linear model is $P=1000-20 t$
b. In what year does the linear model predict the population will be down to one fish?

SOLN: The one fish population will occur when $1000-20 t=1 \Leftrightarrow t=\frac{999}{20}=49.95$ or just at the end of 2026.
c. Write an exponential function (in the form $\left.P=P_{0}(1+r)^{t}\right)$

SOLN: Clearly the initial population is $P_{0}=1000$. So, after 20 years we have $1000(1+r)^{20}=600$ or $(1+r)^{20}=0.6$ so $1+r=0.6^{1 / 20} \approx 0.975$ so $r \sim-0.025$
d. In what year does the exponential model predict the population will be down to one fish? (you will need a logarithm to solve this?)
SOLN: $1000(0.975)^{t}=1 \Leftrightarrow(0.975)^{t}=0.001 \Leftrightarrow t=\log _{0.975}(0.001)=\frac{\log 0.001}{\log 0.975} \approx 272.8$
So that would be toward the end of the year 2249.
11. Find an exponential function (of the form $y=P(1+r)^{x}$) through points $(x, y)=(0,2)$ and $(3,5)$. SOLN: $y=2(1+r)^{x}$ so $5=2(1+r)^{3}$ so $(1+r)^{3}=2.5$ and $1+r=2.5^{1 / 3} \sim 1.3572$ and $y=2(1.3572)^{x}$.
12. Solve for the unknown (remember to show steps):
a. Solve for $y: \quad \log _{3} y=-5 \Leftrightarrow y=3^{-5}=\frac{1}{243}$.
b. Solve for k :

$$
\begin{aligned}
20\left(1+\frac{0.06}{24}\right)^{24 k} & =400 \Leftrightarrow\left(1+\frac{0.01}{4}\right)^{24 k}=20 \Leftrightarrow(1.0025)^{24 k}=20 \Leftrightarrow 24 k=\log _{1.0025} 20 \\
& \Leftrightarrow 24 k=\frac{\log 20}{\log 1.0025} \Leftrightarrow k=\frac{\log 20}{24 \log 1.0025} \approx 49.99
\end{aligned}
$$

