Math 40 - Chapter 4 Test - Spring ‘ 10
Name: \qquad
Directions: Write all responses on separate paper. Show all work for credit.

1. Write equations for the parabola whose graph is shown in
a. Factored form, specifying values for a, r_{1}, and r_{2} in the equation,

$$
y=a\left(x-r_{1}\right)\left(x-r_{2}\right) .
$$

b. Vertex form, specifying the values of a, h, and k in the equation,

$$
y=a(x-h)^{2}+k .
$$

c. Descending powers form, specifying the values of a, b, and c in the equation

$$
y=a x^{2}+b x+c
$$

2. Write an equation for the parabola with intercepts at $(2,0),(0,1)$ and $\left(-\frac{5}{2}, 0\right)$
3. Write equations for the parabola whose graph is shown below
a. Vertex form, specifying the values of a, h, and k in the equation,

$$
y=a(x-h)^{2}+k .
$$

b. Descending powers form, specifying the values of a, b, and c in the equation

$$
y=a x^{2}+b x+c .
$$

4. Write a quadratic inequality whose solutions is given in interval notation:
a. $\quad x \in\left(-\infty,-\frac{5}{3}\right] \cup[2, \infty)$
b. $x \in\left[-\frac{5}{3}, 2\right]$

For problems 5-7, find the coordinates of the (a) x-intercepts (b) the y-intercept and (c) the vertex of the parabola whose equation is given, then carefully construct a graph showing these features.
5. $y=4 x^{2}-36$
6. $y=-(x-2)(x+7)$
7. $y=-2(x-5)^{2}+18$
8. Solve the system of equations algebraically and verify your solutions with a graph.

$$
\begin{aligned}
& y=32-2(x-4)^{2} \\
& y=4 x+10
\end{aligned}
$$

9. Solve the inequality. Write the solution in interval notation.
a. $\quad-\frac{7}{11}(x-1)(x-12) \geq 0$
b. Solve the inequality: $27(x-2)^{2}-12 \geq 0$.
10. Find an equation for the parabola passing the points $(1,1),(2,-3 / 2)$ and $(3,-5)$. That is, find a, b, and c so that $y=a x^{2}+b x+c$.
11. Write equations for the parabola whose graph is shown in
a. Factored form, specifying values for
a, r_{1}, and r_{2} in the equation, $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$.
SOLN: $y=a(x-0)(x-7)=a x(x-7)$. The parabola appears to go through $(3,12)$ so that $12=-12 a$ so that $a=-1$ and $y=-x(x-7)$ is factored form.
b. Vertex form, specifying the values of a, h, and k in the equation, $y=a(x-h)^{2}+k$.

$$
y=-x(x-7)=-x^{2}+7 x-\frac{49}{4}+\frac{49}{4}=y=-\left(x-\frac{7}{2}\right)^{2}+\frac{49}{4}
$$

c. Descending powers form, specifying the values of a, b, and
 c in the equation is simple now: $y=-x^{2}+7 x$
2. Write an equation for the parabola with intercepts at $(2,0),(0,1)$ and $\left(-\frac{5}{2}, 0\right)$

SOLN: From the two intercepts, $y=a(x-2)(2 x+5)$. We can use the y-intercept to find a :
$1=a(-2)(5) \Rightarrow a=\frac{-1}{10}$ so that $y=-\frac{1}{10}(x-2)(2 x+5)=-\frac{1}{5} x^{2}-\frac{1}{10} x+1=-\frac{1}{5}\left(x+\frac{1}{4}\right)^{2}+\frac{81}{80}$
3. Write equations for the parabola whose graph is shown below
a. Vertex form, specifying the values of a, h, and k in the equation, $y=a(x-h)^{2}+k$.
SOLN: Plugging in the coordinates of the vertex in vertex form: $y=a(x-2)^{2}-2$. To solve for a use the y-intercept:
$-10=a(-2)^{2}-2 \Leftrightarrow a=-2$ so $y=-2(x-2)^{2}-2$

b. Descending powers form, specifying the values of a, b, and c in the equation $y=a x^{2}+b x+c$.

SOLN: $y=-2\left(x^{2}-4 x+4\right)-2 \Rightarrow y=-2 x^{2}+8 x-10$
4. Write a quadratic inequality whose solutions is given in interval notation:
a. $x \in\left(-\infty,-\frac{5}{3}\right] \cup[2, \infty)$

SOLN: $(3 x+5)(x-2) \geq 0$
b. $x \in\left[-\frac{5}{3}, 2\right]$

SOLN: $(3 x+5)(x-2) \leq 0$
For problems 5-7, find the coordinates of the (a) x-intercepts (b) the y-intercept and (c) the vertex of the parabola whose equation is given, then carefully construct a graph showing these features.
5. $y=4 x^{2}-36$
$=4(x-3)(x+3)$

$$
y=-(x-2)(x+7)
$$

6.

$$
=\frac{81}{4}-\left(x+\frac{5}{2}\right)^{2}
$$

$$
y=-2(x-5)^{2}+18
$$

7. $=-2 x^{2}+20 x-32$

$$
=-2(x-8)(x-2)
$$

8. Solve the system of equations algebraically and verify your solutions with a graph.

$$
\begin{aligned}
& y=32-2(x-4)^{2} \\
& y=4 x+10
\end{aligned}
$$

SOLN:
$y=32-2(x-4)^{2}=-2 x^{2}+16 x=-2 x(x-8)$ describes a parabola with vertex $(4,32)$ and intercepts at $(0,0)$ and $(8,0)$.
The other equation describes a line with slope $m=4$ and y-intercept $(0,10)$, as shown in the diagram at right.From the graph it appears the intersections are at $(1,14)$ and $(5,30)$.
Solve the following equivalent equations:
$32-2(x-4)^{2}=4 x+10 \Leftrightarrow(x-1)(x-5)=0$

9. Solve the inequality. Write the solution in interval notation.
a. $-\frac{7}{11}(x-1)(x-12) \geq 0$

SOLN: $-\frac{7}{11}(x-1)(x-12) \geq 0$ has boundary points at $x=1$ and $x=12$. A quick check shows that $x=0$ does not solve the inequality, so the solution is between the boundaries: $x \in[1,12]$
b. Solve the inequality: $27(x-2)^{2}-12 \geq 0$.

SOLN:

$$
\begin{aligned}
27(x-2)^{2}-12 & \geq 0 \Leftrightarrow(x-2)^{2} \geq \frac{12}{27}=\frac{4}{9} \Leftrightarrow \sqrt{(x-2)^{2}} \geq \frac{2}{3} \\
& \Leftrightarrow x-2 \geq \frac{2}{3} \text { or } x-2 \leq-\frac{2}{3} \Leftrightarrow x \in\left(-\infty, \frac{4}{3}\right] \cup\left[\frac{8}{3}, \infty\right)
\end{aligned}
$$

10. Find an equation for the parabola passing the points $(1,1),(2,-3 / 2)$ and $(3,-5)$.

That is, find a, b, and c so that $y=a x^{2}+b x+c$.

SOLN: We plug the three given (x, y) pairs into $x^{2} a+x b+c=y$ to get a 3 X3 linear system:

$$
\begin{gathered}
a+b+c=1 \\
4 a+2 b+c=-\frac{3}{2} \\
9 a+3 b+c=-5
\end{gathered}
$$

The difference of the first two equations is

$$
3 a+b=-\frac{5}{2}
$$

and the difference of the second and third equations is

$$
5 a+b=-\frac{7}{2}
$$

Subtracting the first of these from the second yields

$$
2 a=-1 \Leftrightarrow a=-\frac{1}{2}
$$

And substituting this back into the first of these yields

$$
-\frac{3}{2}+b=-\frac{5}{2} \Leftrightarrow b=-1
$$

And since the sum of a, b and c must be $1, c=\frac{5}{2}$
Putting these together we have $y=-\frac{1}{2} x^{2}-x+\frac{5}{2}=\frac{-1}{2}(x+1)^{2}+3=-\frac{1}{2}(x+1-\sqrt{6})(x+1+\sqrt{6})$
So that the parabola has vertex $(-1,3)$ and intercepts $(-1-\sqrt{6}, 0),\left(0, \frac{5}{2}\right),(-1+\sqrt{6}, 0)$:

