Math 40 - Chapter 3 Test - Spring 10
Name: \qquad
Directions: Show all work for credit. Write all responses on separate paper. Don't use a calculator.

1. Solve by extracting roots:
a. $9(x+5)^{2}=1$
b. $2\left(x-\frac{1}{2}\right)^{2}=\frac{3}{2}$
2. Solve by factoring:
a. $x^{2}-x=30$
b. $2 x^{2}-7 x+3=0$
3. Solve by completing the square:
a. $x^{2}+10 x-2=0$
b. $2 x^{2}+8 x-6=0$
4. Suppose a quadratic equation has solutions $x=\frac{1}{4}$ and $x=-\frac{3}{5}$
a. Use the zero product principle to write the equation in the form $\left(x-r_{1}\right)\left(x-r_{2}\right)=0$.
b. Find integer values of a, b and c so that this equation is equivalent to $a x^{2}+b x+c=0$
5. A stone is thrown upward so that its height h after t seconds is given by $h=-16 t^{2}+56 t+6$, where h is measured in feet.
a. At what time, t, will the stone reach its maximum height?
b. What is this maximum height?
6. Find solutions for $8 x^{2}=49$. Write the solutions in simplest radical form.
7. Solve $r=b x-a x^{2}$ for x in terms of a, b and r.
8. In the diagram at right, $\triangle A O B$ is a right triangle with right angle at the circle's center, O. Find the radius r of the circle if $A C=7$ and $A B=97$.
9. If the longer leg of a right triangle is 1 foot less than four times the short leg and the hypotenuse is 1 foot longer than four times the shorter leg, what are the
 lengths of the legs?
10. Make a table of values including the vertex and the intercepts for the parabola whose equation is $y=4-x^{2}$ and sketch a graph for the parabola showing these features.
11. If the long leg of a right triangle is 11 feet less than twice the short leg and the hypotenuse is 3 feet less than twice the short leg, what are the lengths of the legs?
12. The hypotenuse of a right triangle is 10 more than three times the short leg. If the square of the longer leg is 912 , what is the length of the hypotenuse?
13. Use the quadratic formula to solve for n in terms of $x: 4 n^{2}+8 n x+3 x^{2}=0$.
14. Consider the equation $x^{2}+3 x+5=0$.
a. What is the discriminant of this quadratic?
b. Where is the vertex of $y=x^{2}+3 x+5$?
c. Which way does the parabola comprised by the solution set of $y=x^{2}+3 x+5$ open? How do you know?
d. Make a table of values including the vertex, the y-intercept and the point which is the reflection of the y-intercept across the line of symmetry for this parabola.

Math 40 - Chapter 3 Test Solutions - Spring ‘10

1. Solve by extracting roots:
a. $9(x+5)^{2}=1$

SOLN: $9(x+5)^{2}=1 \Leftrightarrow(x+5)^{2}=\frac{1}{9} \Leftrightarrow x+5= \pm \frac{1}{3} \Leftrightarrow x=-5 \pm \frac{1}{3}=-\frac{16}{3}$ or $-\frac{14}{3}$
b. $2\left(x-\frac{1}{2}\right)^{2}=\frac{3}{2}$

SOLN: $2\left(x-\frac{1}{2}\right)^{2}=\frac{3}{2} \Leftrightarrow\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4} \Leftrightarrow x-\frac{1}{2}= \pm \frac{\sqrt{3}}{2} \Leftrightarrow x=\frac{1}{2} \pm \frac{\sqrt{3}}{2}$
2. Solve by factoring:
a. $x^{2}-x=30$

SOLN: $x^{2}-x=30 \Leftrightarrow x^{2}-x-30=0 \Leftrightarrow(x-6)(x+5)=0 \Leftrightarrow x=6$ or $x=-5$
b. $2 x^{2}-7 x+3=0$

SOLN: $2 x^{2}-7 x+3=0 \Leftrightarrow(2 x-1)(x-3)=0 \Leftrightarrow x=\frac{1}{2}$ or $x=3$
3. Solve by completing the square:
a. $x^{2}+10 x-2=0$

$$
x^{2}+10 x-2=0 \Leftrightarrow x^{2}+10 x=2 \Leftrightarrow x^{2}+10 x+25=2+25 \Leftrightarrow(x+5)^{2}=27
$$

SOLN:

$$
\Leftrightarrow x+5= \pm \sqrt{27} \Leftrightarrow x=-5 \pm 3 \sqrt{3}
$$

b. $2 x^{2}+8 x-6=0$

SOLN: $x^{2}+4 x=3 \Leftrightarrow x^{2}+4 x+4=7 \Leftrightarrow(x+2)^{2}=7 \Leftrightarrow x+2= \pm \sqrt{7} \Leftrightarrow x=-2 \pm \sqrt{7}$
4. Suppose a quadratic equation has solutions $x=\frac{1}{4}$ and $x=-\frac{3}{5}$
a. Use the zero product principle to write the equation in the form $\left(x-r_{1}\right)\left(x-r_{2}\right)=0$.

SOLN: $\left(x-\frac{1}{4}\right)\left(x+\frac{3}{5}\right)=0$
b. Find integer values of a, b and c so that this equation is equivalent to $a x^{2}+b x+c=0$

SOLN: $20\left(x-\frac{1}{4}\right)\left(x+\frac{3}{5}\right)=0 \cdot 20 \Leftrightarrow(4 x-1)(5 x+3)=0 \Leftrightarrow 20 x^{2}+7 x-3=0$
5. A stone is thrown upward so that its height h after t seconds is given by $h=-16 t^{2}+56 t+6$, where h is measured in feet.
a. At what time, t, will the stone reach its maximum height?

SOLN:

$$
h=-16 t^{2}+56 t+6=-16\left(t^{2}-\frac{7}{2} t\right)+6=-16\left(t^{2}-\frac{7}{2} t+\left(\frac{7}{4}\right)^{2}\right)+6+16\left(\frac{7}{4}\right)^{2}=-16\left(t-\frac{7}{4}\right)^{2}+55
$$

So the vertex is at $(7 / 4,55)$ and the maximum height of 55 is reached after $7 / 4$ seconds.
b. What is this maximum height? (see above)
6. Find solutions for $8 x^{2}=49$. Write the solutions in simplest radical form.

SOLN: $8 x^{2}=49 \Leftrightarrow x^{2}=\frac{49}{8} \Leftrightarrow x= \pm \sqrt{\frac{49}{8}}= \pm \frac{7}{\sqrt{8}}= \pm \frac{7}{2 \sqrt{2}}= \pm \frac{7 \sqrt{2}}{4}$
7. Solve $r=b x-a x^{2}$ for x in terms of a, b and r.

$$
a x^{2}-b x+r=0 \Leftrightarrow x^{2}-\frac{b}{a} x=-\frac{r}{a} \Leftrightarrow x^{2}-\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=-\frac{r}{a}+\left(\frac{b}{2 a}\right)^{2}
$$

SOLN:

$$
\begin{aligned}
& \Leftrightarrow\left(x-\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{r}{a} \Leftrightarrow x-\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}}{4 a^{2}}-\frac{r}{a}} \\
& \Leftrightarrow x=\frac{b}{2 a} \pm \sqrt{\frac{b^{2}}{4 a^{2}}-\frac{r}{a}}
\end{aligned}
$$

8. In the diagram at right, $\triangle A O B$ is a right triangle with right angle at the circle's center, O. Find the radius r of the circle if $A C=7$ and $A B=97$. SOLN:
$(r+7)^{2}+r^{2}=97^{2} \Leftrightarrow r^{2}+14 r+49+r^{2}=9409 \Leftrightarrow 2 r^{2}+14 r-9360=0$
Reduce by a factor 2: $r^{2}+7 r-4680=0$ To factor, we'd need to number whose product is 4680 and differ by 7 . Since the square root of 4680 is
 somewhere in the sixties, that's a good place to start. $4680=60 * 78$. That's not it. How about $65 * 72$? That'll do! So $r^{2}+7 r-4680=(r-65)(r+72)$ and so the radius of the circle is 65 .
Add 65, 72, 97 to your list of Pythagorean triples.
9. If the longer leg of a right triangle is 1 foot less than four times the short leg and the hypotenuse is 1 foot longer than four times the shorter leg, what are the lengths of the legs?
SOLN: Let $x=$ the length of the short leg. Then the long leg is $4 x-1$ and the hypotenuse is $4 x+1$ so that, by Pythagoras' theorem, $x^{2}+(4 x-1)^{2}=(4 x+1)^{2}$. Expanding the squares, $x^{2}+16 x^{2}-8 x+1=16 x^{2}+8 x+1$. Combining like terms to standard form, $x^{2}-16 x=0$ which we can solve by factoring. Ruling out $x=0$ as silly, we get $x=16$, so the longer leg is 63 and the hypotenuse is 65 . Add 16, 63, 65 to your list of Pythagorean triples.
10. Make a table of values including the vertex and the intercepts for the parabola whose equation is $y=4-x^{2}$ and sketch a graph for the parabola showing these features.

SOLN: The vertex at $(0,4)$ is also the y-intercept. The x-intercepts are at $(-2,0)$ and $(2,0)$.

x	-2	-1	0	1	2
y	0	3	4	3	0

