Math 40 - Intermediate Algebra - Chapter 2 Test Name: \qquad

Directions:

Show all work.
Write all responses on separate paper, except the graph in \#2.
Make large graphs and don't crowd your work into corners or margins.

1. Solve the system of equations by the method of graphing: $\begin{aligned} 2 x+y & =8 \\ x-y & =-5\end{aligned}$

Be sure to scale and label your axes and label the solution to the system with coordinates.
2. Solve the system: $\begin{aligned} 23 x-14 y & =17 \\ 2 x+y & =17\end{aligned}$ and then illustrate how the two lines intersect at that point by plotting the two lines together in a graph. Tabulate and plot intercepts for each line.

3. Describe each of the following systems as either dependent, inconsistent, or independent and consistent. Show how you justify your conclusion.
a. $y=-\frac{17}{5} x$
b. $y=-\frac{17}{5} x$
c. $y=-\frac{17}{5} x+1$
d. $y=\frac{17}{5} x$
$17 x+5 y=0$
$5 x+17 y=0$
$17 x+5 y=1$
$5 x+17 y=1$
4. Solve the system of equations by elimination, then illustrate in a graph how the two lines intersect at the solution point. Give coordinates of the solution.

$$
\begin{aligned}
2 x-3 y & =10 \\
x-2 y & =6
\end{aligned}
$$

5. A concession stand sells apple juice and tangerine juice. The apple juice costs $\$ 1.50$ per cup and the tangerine juice costs $\$ 0.85$. If the concession stand made $\$ 88.80$ of revenue selling 80 apple juice and tangerine juice cups during a day, how many tangerine juice cups were sold?
6. A collection includes nickels, dimes and quarters. There are 24 coins. The total value of the coins is $\$ 3$ and there is one more nickel than there are dimes. Set up and solve a system of equations to find how many of each type of coin there are.
7. Solve the system by back substitution:

$$
\begin{aligned}
3 x-4 y+5 z & =17 \\
7 y-4 z & =16 \\
3 z & =9
\end{aligned}
$$

8. Find a solution the system (in x, y and z) with the augmented matrix:

$$
\left[\begin{array}{ccc|c}
2 & 4 & 8 & 8 \\
3 & 0 & 0 & -12 \\
0 & 5 & 7 & 17
\end{array}\right]
$$

9. Solve the dependent system and express x and y in terms of z.

$$
\begin{aligned}
2 x-y+z & =10 \\
x+2 y+2 z & =5 \\
8 x+y+7 z & =40
\end{aligned}
$$

10. Graph the system of inequalities, label the vertices with coordinate values and shade the solution region:

$$
\begin{aligned}
& 3 y-4 x \leq 9 \\
& y+x \leq 10 \\
& x \geq 0, \quad y \geq 0
\end{aligned}
$$

Solutions For Chapter 2 Test Form A.

1. Solve the system of equations by the method of graphing: $\begin{gathered}2 x+y=8 \\ x-y=-5\end{gathered}$

Be sure to scale and label your axes and label the solution to the system with coordinates.

SOLN: Intercepts tables are, respectively, \begin{tabular}{l|l|l}
x \& 0 \& 4

\hliney \& 8 \& 0

 and

x \& 0 \& -5

\hliney \& 5 \& 0
\end{tabular} . The intersection is at (1,6).

2. Solve the system: $\begin{aligned} 23 x-14 y & =17 \\ 2 x+y & =17\end{aligned}$ and then illustrate how the two lines intersect at that point by plotting the two lines together in a graph. Tabulate and plot intercepts for each line.
SOLN: Solving the second equation for y we get $y=17-2 x$ and substituting into the first yields $23 x-14(17-2 x)=17 \Leftrightarrow 51 x-238=17 \Leftrightarrow 51 x=255 \Leftrightarrow x=5$ and so $y=7$.

Tabulating values for each graph we have \begin{tabular}{l|c|c}
x \& 0 \& $\frac{17}{23} \approx 0.74$

\hliney \& $-\frac{17}{14} \approx-1.2$ \& 0

 and

x \& 0 \& $\frac{17}{2}=8.5$

\hliney \& 17 \& 0
\end{tabular}

3. Describe each of the following systems as either dependent, inconsistent, or independent and consistent. Show how you justify your conclusion.
a.
$y=-\frac{17}{5} x$ $17 x+5 y=0$

SOLN: Dependent: same slope ($-17 / 5$) and some y-intercept (0,0).
b. $y=-\frac{17}{5} x$
$5 x+17 y=0$
SOLN: Independent and consistent (not parallel.)
c. $y=-\frac{17}{5} x+1$
$17 x+5 y=1$
SOLN: Inconsistent. Parallel with different y -intercepts.
d. $y=\frac{17}{5} x$

$$
5 x+17 y=1
$$

SOLN: Independent and consistent. (not parallel)
4. Solve the system of equations by elimination, then illustrate in a graph how the two lines intersect at the solution point. Give coordinates of the solution:

$$
2 x-3 y=10
$$

$$
x-2 y=6
$$

$$
2 x-3 y=10
$$

SOLN: $-2 x+4 y=-12$ and so $2 x+6=10$ and so $x=2$. Thus the intersection is at $(2,-2)$.

5. A concession stand sells apple juice and tangerine juice. The apple juice costs $\$ 1.50$ per cup and the tangerine juice costs $\$ 0.85$. If the concession stand made $\$ 88.80$ of revenue selling 80 apple juice and tangerine juice cups during a day, how many tangerine juice cups were sold?
SOLN: Let A represent the number of apple juice cups sold and let T represent the number of tangerine cups sold. Then $150 A+85 T=8880$ and $A+T=80$. Substituting $A=80-T$ into the first equation we have $150(80-T)+85 T=12000-65 T=8880$ and thus $T=3120 / 65=48$ so that $A=80-48=32$.
6. Let $N=$ number of nickels, $D=$ number of dimes and $Q=$ number of quarters. Then

$$
\begin{array}{rlr}
N+D+Q & =24 & 2 N+Q=25
\end{array} \quad \Rightarrow 10 N+5 Q=125 \Rightarrow 7 N=63
$$

$$
3 x-4 y+5 z=17
$$

$$
x=6
$$

7. $7 y-4 z=16 \Rightarrow 7 y-4(3)=16 \Rightarrow 3 x-4(4)+5(3)=17$. So the sol'n is $y=4$

$$
3 z=9
$$

$$
z=3
$$

8. $\left[\begin{array}{ccc|c}2 & 4 & 8 & 8 \\ 3 & 0 & 0 & -12 \\ 0 & 5 & 7 & 17\end{array}\right] \sim\left[\begin{array}{ccc|c}2 & 4 & 8 & 8 \\ 0 & 12 & 24 & 48 \\ 0 & 5 & 7 & 17\end{array}\right] \sim\left[\begin{array}{ccc|c}2 & 4 & 8 & 8 \\ 0 & 1 & 2 & 4 \\ 0 & 5 & 7 & 17\end{array}\right] \sim\left[\begin{array}{lll|l}2 & 4 & 8 & 8 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 3 & 3\end{array}\right]$

So $z=1, y=2$ and $x=-4$
9. Solve the dependent system and express x and y in terms of z.

$$
\begin{aligned}
2 x-y+z & =10 \\
x+2 y+2 z & =5 \\
8 x+y+7 z & =40
\end{aligned}
$$

SOLN: $\left[\begin{array}{ccc:c}2 & -1 & 1 & 10 \\ 1 & 2 & 2 & 5 \\ 8 & 1 & 7 & 40\end{array}\right] \sim\left[\begin{array}{ccc:c}2 & -1 & 1 & 10 \\ 0 & 5 & 3 & 0 \\ 0 & 5 & 3 & 0\end{array}\right] \sim\left[\begin{array}{ccc:c}2 & -1 & 1 & 10 \\ 0 & 5 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ so that all solutions can be characterized as elements of the set $\{(x, y, z) \mid y=-3 z / 5, x=2 z / 5\}$
10. Graph the system of inequalities, label the vertices with coordinate values and shade the solution

$$
\begin{aligned}
& 3 y-4 x \leq 9 \\
& y+x \leq 10 \\
& x \geq 0, \quad y \geq 0
\end{aligned}
$$

