Name: \qquad

Directions:

Show all work for full credit.
Write all responses on separate paper, with the exception of the line you draw for \#10.
Do not use a calculator.
Use plenty of paper. Make large graphs. Don't crowd into a corner.

1. A bicycle messenger is paid $\$ 100$ per day plus $\$ 15.33$ for every hour she bicycles.
a. Make a table of values tabulating her earnings E (in $\$$) in relation to the time t (in hours) that she bicycles during a day. Include values for $t=0, t=1, t=4$ and $t=8$.
b. Write an equation for the relation between E and t.
2. Dan chooses to gamble $\$ 100$ on coin flips. The agreement is that he will win $\$ 10$ if the coin flip is "heads" and lose $\$ 2.5$ if the coin flip is "tails." To Dan's dismay, every flip of the coin is "tails."
a. Write a formula for the gambling money, M, Dan has after flipping the coin n times.
b. After how many flips will Dan go broke (lose all his gambling money) ?
3. Determine whether or not the table represents x and y in a linear relation. If it is linear, what is the constant slope? If it is not linear, how does the slope change?

x	0	1	10	40
y	100	97.8	78	12

4. The World Conservation Union estimates the current polar bear population of 22,000 bears will decline steadily by 40% over the next 30 years. Using these assumptions, give a linear equation modeling the polar bear population P in terms of the number of years from now, t.
5. The height above sea level H, in meters, of a rocket at time t, in seconds, is modeled by the linear equation, $H=1000+1.5 t$. At what time will the rocket be 10000 meters above sea level?
6. Graph the triangle with coordinates $A(1,6), B(5,1)$ and $C(-4,2)$ in the $x y$-plane. Is this a right triangle? Support your answer by computing slopes to show the triangle has a right angle or not.
7. Find the x coordinate at the point where $y=3$ on a line through $(11,5)$ with slope $\frac{3}{7}$.
8. Find the slope intercept form for the equation of the line through $\left(\frac{3}{4}, \frac{1}{2}\right) \&\left(\frac{1}{4}, \frac{7}{2}\right)$. Simplify.
9. A circle is centered at $(6,0)$ and passes through $(10,-3)$. Find an equation for the line tangent to the circle at (10,-3). It may help to make a graph.
10. The scatterplot shown at right plots experimental data for the temperature change $\left({ }^{\circ} \mathrm{C}\right)$ in a substance hit by radiation of various frequencies (megahertz).
a. Use a straight edge to estimate a line of best fit for the scatterplot.
b. Use your line to predict the temperature change from a frequency of 0.284 MHz .
c. Estimate the equation for the regression line.
d. Use your equation to estimate the temperature
 change from a 0.28 MHz radiation
11. The data shown at right tabulates the second test
T_{1} scores T_{1} and T_{2} of 7 students on the first two tests
a. Make a scatterplot showing the first test score 94 along the horizontal axis and the second score along the vertical axis
b. Draw a straight line approximating these data.
c. Calculate the equation for the line of best fit.

Math 40 - Chapter 1 Test Solutions - Spring 2010

1. A bicycle messenger is paid $\$ 100$ per day plus $\$ 15.33$ for every hour she bicycles.
a. Make a table of values tabulating her earnings E (in $\$$) in relation to the time t (in hours) that she bicycles during a day. Include values for $t=0, t=1, t=4$ and $t=8$.

b. Write an equation for the relation between E and t.
$E=15.33 t+100$
2. Dan chooses to gamble $\$ 100$ on coin flips. The agreement is that he will win $\$ 10$ if the coin flip is "heads" and lose $\$ 2.5$ if the coin flip is "tails." To Dan's dismay, every flip of the coin is "tails." a. Write a formula for the gambling money, M, Dan has after flipping the coin n times.

SOLN: $M=100-2.5 n$
b. After how many flips will Dan go broke (lose all his gambling money) ?
$M=0 \Leftrightarrow 100-2.5 n=0 \Leftrightarrow 2.5 n=100 \Leftrightarrow n=\frac{100}{2.5}=\frac{1000}{25}=40$ coin flips before Dan is broke.
3. Determine whether or not the table represents x and y in a linear relation. If it is linear, what is the constant slope? If it is not linear, how does the slope change?

x	0	1	10	40
y	100	97.8	78	12

SOLN: To be linear it is necessary and sufficient that the slopes of the line segments connecting the first point with each of the next three are equal.

$$
\frac{97.8-100}{1-0}=-2.2=\frac{78-100}{10-0}=-2.2=\frac{12-100}{40-0}=-2.2
$$

So, yes the table represents x and y in a linear relation.
4. The World Conservation Union estimates the current polar bear population of 22,000 bears will decline steadily by 40% over the next 30 years. Using these assumptions, give a linear equation modeling the polar bear population P in terms of the number of years from now, t. SOLN: 40% of 22,000 is 8800 bears, so we have a decrease of 8800 bears over 30 years giving a rate of change equal to $\frac{-880}{3} \approx-290$ bears/year. Thus we can model the bear population in t years by $P=22000-293 t$, where the " $=$ " sign is understood to be approximate because the equation is just a model for some real world phenomenon.
5. The height above sea level H, in meters, of a rocket at time t, in seconds, is modeled by the linear equation, $H=1000+1.5 t$. At what time will the rocket be 10000 meters above sea level?
SOLN: $H=10000 \Leftrightarrow 1000+1.5 t=10000 \Leftrightarrow 1.5 t=9000 \Leftrightarrow t=\frac{9000}{1.5}=\frac{18000}{3}=6000 \mathrm{sec}$.
6. Graph the triangle with coordinates $A(1,6), B(5,1)$ and $C(-4,2)$ in the $x y$-plane. Is this a right triangle? Support your answer by computing slopes to show the triangle has a right angle or not. SOLN $m(A B)=\frac{1-6}{5-1}=-\frac{5}{4}$ and $m(A C)=\frac{6-2}{1-(-4)}=\frac{4}{5}$ are negative reciprocals, so AB and AC are perpendicular - they meet in a right angle - so this is a right triangle.
7. Find the x coordinate at the point where $y=3$ on a line through $(11,5)$ with slope $\frac{3}{7}$.

SOLN: An equation for the line can be found by using the point-slope formula:
$y-y_{1}=m\left(x-x_{1}\right) \Leftrightarrow y-5=\frac{3}{7}(x-11)$. Plug in $y=3$ and we have an equation we can solve for the x-coordinate: $3-5=\frac{3}{7}(x-11) \Leftrightarrow x-11=\frac{-14}{3} \Leftrightarrow x=11-\frac{14}{3}=\frac{19}{3}=6 \frac{1}{3}=6 . \overline{3}$
8. Find the slope intercept form for the equation of the line through $\left(\frac{3}{4}, \frac{1}{2}\right) \&\left(\frac{1}{4}, \frac{7}{2}\right)$. Simplify. $m=\frac{\frac{7}{2}-\frac{1}{2}}{\frac{1}{4}-\frac{3}{4}}=\frac{6 / 2}{-2 / 4}=-\frac{3}{1 / 2}=-\frac{3}{1} \cdot \frac{2}{1}=-6$ so $y-\frac{1}{2}=-6\left(x-\frac{3}{4}\right) \Leftrightarrow y=-6 x+\frac{9}{2}+\frac{1}{2} \Leftrightarrow y=-6 x+5$
9. A circle is centered at $(6,0)$ and passes through $(10,-3)$. Find an equation for the line tangent to the circle at $(10,-3)$. It may help to make a graph.
SOLN: The slope of the radius line is $m=\frac{\Delta y}{\Delta x}=\frac{-3-0}{10-6}=\frac{-3}{4}$ so the perpendicular slope is $m_{\perp}=\frac{4}{3}$ and a point slope form for the equation is $y-(-3)=\frac{4}{3}(x-10) \Leftrightarrow y=\frac{4}{3} x-\frac{49}{3}$ (slope-intercept)
10. The scatterplot shown at right plots experimental data for the temperature change $\left({ }^{\circ} \mathrm{C}\right)$ in a substance hit by radiation of various frequencies (megahertz).
a. Use a straight edge to estimate a line of best fit for the scatterplot.
SOLN: Connecting the second and last dots works pretty well. You end up with a couple of points above, a couple below and a couple right on the line.

b. Use your line to predict the temperature change from a frequency of 0.284 MHz .

SOLN: About $0.540{ }^{\circ} \mathrm{C}$ temperature change.
c. Estimate the equation for the regression line.

SOLN: Taking the slope to be $\frac{0.544-0.519}{0.2855-0.2780}=\frac{0.025}{0.0075}=\frac{250}{75}=\frac{10}{3} \approx 3.3^{\circ} \mathrm{C} / \mathrm{MHz}$ and plugging into the point slope formula: $T-0.519 \approx 3.3(f-0.278) \Leftrightarrow T=3.3 f-0.40$
d. Use your equation to estimate the temperature change from a 0.28 MHz radiation

SOLN: $T \approx 3.3(0.28)-0.40 \approx 0.92-0.4=0.52^{\circ} \mathrm{C}$

