Math 40 Final Exam - Spring '10
Name: \qquad
Directions: Write all responses on separate paper. Show work for credit.

1. Consider the line in $x y$-plane which is the solution set for the equation to $\frac{x}{17}+\frac{y}{51}=1$.
a. What are the coordinates where the line crosses the coordinate axes? That is, what are the coordinates of the x-intercept and the y-intercept?
b. What is the slope of the line?
c. Write an equation for the line in slope-intercept form.
d. Write an equation for the line perpendicular to this line and passing through $(0,0)$.
2. The graph to the right shows the solution to a system of equations. Write the system in standard form, that is, find values of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ so that the system is in the form:

$$
\begin{aligned}
& A x+B y=C \\
& D x+E y=F
\end{aligned}
$$

3. Solve the system by back substitution:

$$
\begin{aligned}
3 x-4 y+5 z & =30 \\
7 y-4 z & =6 \\
2 z & =18
\end{aligned}
$$

4. Solve the system using either elimination, substitution, or row reduction on an augmented matrix.

$$
\begin{aligned}
& 2 x-y+3 z=38 \\
& x+3 y+2 z=52 \\
& 4 x-2 y-z=-43
\end{aligned}
$$

5. Consider the parabola in $x y$-plane which is the solution set for the equation to $y=-x^{2}-2 x+15$.
a. Find the coordinates of the y-intercept and the x-intercepts for the parabola.
b. Find the coordinates of the vertex for this parabola.
c. Sketch a graph showing these features.
6. Consider the parabola in $x y$-plane which is the solution set for the equation to $y=4 x^{2}-16 x-33$.
a. Find the coordinates of the y-intercept and the x-intercepts for the parabola.
b. Find the coordinates of the vertex for this parabola.
c. Sketch a graph showing these features.
7. Consider the parabola passing through the points $(0,-14),(1,-4)$ and $(4,2)$.
a. Set up a system of linear equations in a, b, and c to find an equation of the form $y=a x^{2}+b x+c$ for the parabola.
b. What are the coordinates of the vertex for this parabola?
8. Consider the quadratic equation $\left(x-\frac{3}{4}\right)^{2}=\frac{3}{8}$.
a. Solve the equation and write the solutions in simplest radical form.
b. Solve the inequality, $\left(x-\frac{3}{4}\right)^{2} \leq \frac{3}{8}$, and write the solutions using interval notation.
9. Write a quadratic inequality whose solution is $x \in[-1,7]$
10. Consider the function $f(x)=4-\sqrt{25-x^{2}}$.
a. Evaluate $f(-5), f(-4), f(-3), f(0), f(3) f(4)$, and $f(5)$, and summarize your results in a table of x and y values.
b. Plot these points in the $x y$-coordinate plane and connect them with a smooth curve.
c. What is the domain of the function? What is the range?
11. Consider the circle in the $x y$-plane with radius 5 and center at $(-2,4)$.
a. Use the standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$ to write an equation for the circle
b. Find the coordinates of the x-intercepts of the circle. That is, plug in $y=0$ and solve for y.
c. Find the coordinates of the y-intercepts of the circle.
d. Construct a graph of the circle showing the coordinates of the center, intercepts and extreme left, right, top, and bottom points.
12. A population of alligator fish in a Mississippi estuary is modeled by the function, $P(t)=117(1.023)^{t}$ where P is the population size and t is years since January $1,2000$.
a. What was the population on January 1, 2000?
b. What is the growth factor? What is the growth rate?
c. What was the population after one month? (You'll need a calculator to compute this.)
d. What will the population be on January 1, 2012?
e. How long will it take the population to grow to 200 ?
13. Find values of a and b so that $g(x)=a(b)^{x}$ is an exponential function that fits this table of values:

x	0	10	20
$g(x)$	1.040	1.528	2.245

14. Solve each equation for x, do not approximate:
a. $10^{x}=120$
b. $2^{x}=1000$
c. $\quad \log _{10}(x)=2$
d. $\log _{2}(x-3)=8$

Math 40 Final Exam - Spring '10
Name: \qquad
Directions: Write all responses on separate paper. Show work for credit.

1. Consider the line in $x y$-plane which is the solution set for the equation to $\frac{x}{17}+\frac{y}{51}=1$.
a. What are the coordinates where the line crosses the coordinate axes? That is, what are the coordinates of the x-intercept and the y-intercept?
SOLN: $(17,0)$ and $(0,51)$ are the x-intercept and the y-intercept, respectively.
b. What is the slope of the line?

SOLN: $m=-51 / 17=-3$.
c. Write an equation for the line in slope-intercept form.

SOLN: $y=-3 x+51$.
d. Write an equation for the line perpendicular to this line and passing through $(0,0)$.

SOLN: $y=x / 3$.
2. The graph to the right shows the solution to a system of equations. Write the system in standard form, that is, find values of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ so that the system is in the form:

$$
\begin{aligned}
& A x+B y=C \\
& D x+E y=F
\end{aligned}
$$

SOLN: The slopes of the lines are $m_{1}=7 / 8$ and $m_{2}=-5 / 8$ so the equations are
$y=\frac{7}{8} x+1 \Leftrightarrow-7 x+8 y=8$ and $y=\frac{-5}{8} x+13 \Leftrightarrow 5 x+8 y=104$ so the system can be written as

$$
\begin{array}{rl|}
-7 x+8 y & =8 \\
5 x+8 y & =104 \\
\hline
\end{array}
$$

$$
\begin{aligned}
3 x-4 y+5 z & =30 \\
7 y-4 z & =6 \\
2 z & =18
\end{aligned}
$$

3. Solve the system by back substitution: $\quad 7 y-4 z=6$

SOLN: $z=9, y=6$ and $x=(30-45+24) / 3=3$.
4. Solve the system using either elimination, substitution, or row reduction on an augmented matrix.

$$
\begin{aligned}
& 2 x-y+3 z=38 \\
& x+3 y+2 z=52 \\
& 4 x-2 y-z=-43 \\
& 2 x-y+3 z=38
\end{aligned}
$$

SOLN: $x+3 y+2 z=52$
$4 x-2 y-z=-43$
$\Rightarrow\left[\begin{array}{ccc:c}2 & -1 & 3 & 38 \\ 1 & 3 & 2 & 52 \\ 4 & -2 & -1 & -43\end{array}\right] \sim\left[\begin{array}{ccc:c}1 & 3 & 2 & 52 \\ 0 & 7 & 1 & 66 \\ 0 & 14 & 9 & 251\end{array}\right] \sim\left[\begin{array}{ccc:c}1 & 3 & 2 & 52 \\ 0 & 7 & 1 & 66 \\ 0 & 0 & -7 & -119\end{array}\right]$ $\Rightarrow z=17, y=7$ and $x=-3$.
5. Consider the parabola in $x y$-plane which is the solution set for the equation to $y=-x^{2}-2 x+15$.
a. Find the coordinates of the y-intercept and the x-intercepts for the parabola.

SOLN: The y-intercept is $(0,15) . \quad y=-x^{2}-2 x+15=16-(x+1)^{2}$ is a difference of squares
so $y=16-(x+1)^{2}=(4-(x+1))(4+(x+1))=(3-x)(5+x)=-(x+5)(x-3)$ and by the zero product principle, the x-intercepts are $(-5,0)$ and $(3,0)$.
b. Find the coordinates of the vertex for this parabola.

SOLN: $y=-x^{2}-2 x+15=16-(x+1)^{2}$, so the vertex is $(-1,16)$.
c. Sketch a graph showing these features.
SOLN:
6. Consider the parabola in $x y$-plane which is the solution set for the equation to $y=4 x^{2}-16 x-33$.
a. Find the coordinates of the y-intercept and the x-intercepts for the parabola.

SOLN: y-intercept is $(0,-33)$. To find x-intercepts, solve
$y=4 x^{2}-16 x-33=0 \Leftrightarrow(x-2)^{2}=\frac{33}{4}+4 \Leftrightarrow x=2 \pm \sqrt{\frac{49}{4}}=\frac{11}{2}$ or $-\frac{3}{2}$
b. Find the coordinates of the vertex for this parabola.

SOLN: $y=4 x^{2}-16 x-33=4(x-2)^{2}-49$ has vertex $(2,-49)$.
c. Sketch a graph showing these features.

SOLN:

7. Consider the parabola passing through the points $(0,-14),(1,-4)$ and $(4,2)$.
a. Set up a system of linear equations in a, b, and c to find an equation of the form $y=a x^{2}+b x+c$ for the parabola.

$$
\text { SOLN: } \begin{array}{rlrl}
c & =-14 \\
a+b+c & =-4 & \text { or } \begin{aligned}
a+b & =10 \\
16 a+4 b+c & =2
\end{aligned} \quad \begin{aligned}
a+b & =10
\end{aligned} \quad \text { or } \begin{aligned}
a+b & =16 \\
4 a+b & =4
\end{aligned} \quad \text { So } a=-2, b=12 \text { and } c=-14 .
\end{array}
$$

b. What are the coordinates of the vertex for this parabola?

SOLN $y=-2 x^{2}+12 x-14=-2(x-3)^{2}+4$ so the vertex is where $h=3$ and $k=4$, at $(3,4)$.
8. Consider the quadratic equation $\left(x-\frac{3}{4}\right)^{2}=\frac{3}{8}$.
a. Solve the equation and write the solutions in simplest radical form.

SOLN: $\left(x-\frac{3}{4}\right)^{2}=\frac{3}{8} \Leftrightarrow x-\frac{3}{4}= \pm \frac{\sqrt{3}}{2 \sqrt{2}} \Leftrightarrow x=\frac{3}{4} \pm \frac{\sqrt{6}}{4}$
b. Solve the inequality, $\left(x-\frac{3}{4}\right)^{2} \leq \frac{3}{8}$, and write the solutions using interval notation.

SOLN: $\left[\frac{3}{4}-\frac{\sqrt{6}}{4}, \frac{3}{4}+\frac{\sqrt{6}}{4}\right]$
9. Write a quadratic inequality whose solution is $x \in[-1,7]$

SOLN: $(x+1)(x-7) \leq 0$.
10. Consider the function $f(x)=4-\sqrt{25-x^{2}}$.
a. Evaluate $f(-5), f(-4), f(-3), f(0), f(3) f(4)$, and $f(5)$, tabulate your results.

$$
f(\pm 5)=4-\sqrt{25-25}=4, f(\pm 4)=4-\sqrt{25-16}=1, f(\pm 3)=4-\sqrt{25-9}=0 \text { and } f(0)=-1
$$

x	-5	-4	-3	0	3	4	5
$f(x)$	4	1	0	-1	0	1	4

b. Plot these points in the $x y$-coordinate plane and connect them with a smooth curve.
c. What is the domain of the function? What is the range?
SOLN: The domain is $[-5,5]$ and the range is $[-1,4]$

11. Consider the circle in the $x y$-plane with radius 5 and center at $(-2,4)$.
a. Use the standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$ to write an equation for the circle.
SOLN: $(x+2)^{2}+(y-4)^{2}=25$
b. Find the coordinates of the x-intercepts.

SOLN: $(x+2)^{2}+(0-4)^{2}=25$

$$
\Leftrightarrow(x+2)^{2}=9 \Leftrightarrow x=-2 \pm 3
$$

so the x-intercepts are $(-5,0)$ and $(1,0)$
c. Find the coordinates of the y-intercepts of the circle. SOLN: These are $(0,4 \pm \sqrt{21})$
$(0+2)^{2}+(y-4)^{2}=25 \Leftrightarrow$
$(y-4)^{2}=21 \Leftrightarrow y=4 \pm \sqrt{21}$
d. Construct a graph of the circle showing the coordinates of the center, intercepts and extreme left, right, top, and bottom points.

12. A population of alligator fish in a Mississippi estuary is modeled by the function, $P(t)=117(1.023)^{t}$ where P is the population size and t is years since January $1,2000$.
a. What was the population on January 1, 2000?

SOLN: $P(0)=117$
b. What is the growth factor? What is the growth rate?

SOLN: The growth factor is 1.023 and the growth rate is 2.3%
c. What was the population after one month? (You'll need a calculator to compute this.)

SOLN: $P\left(\frac{1}{12}\right)=117(1.023)^{1 / 12} \approx 117(1.0009945418) \approx 117$, so no growth the first month
d. What will the population be on January 1, 2012?
$\operatorname{SOLN} P(12)=117(1.023)^{12} \approx 117(1.3137345) \approx 154$
e. How long will it take the population to grow to 200 ?

SOLN:
$P(t)=117(1.023)^{t}=200 \Leftrightarrow(1.023)^{t}=\frac{200}{117} \Leftrightarrow t=\log _{1.023}\left(\frac{200}{117}\right)=\frac{\log (200 / 117)}{\log 1.023} \approx 23.6 \mathrm{yrs}$.
13. Find values of a and b so that $g(x)=a(b)^{x}$ is an exponential function that fits this table of values:

x	0	10	20
$g(x)$	1.040	1.528	2.245

SOLN: $g(0)=a(b)^{0}=1.040$ and $g(10)=1.04(b)^{10}=1.528$ means
$b^{10}=\frac{1.528}{1.04} \approx 1.46923 \Rightarrow b=(1.43923)^{1 / 10} \approx 1.0392$ so $g(x)=1.04(1.0392)^{x}$
14. Solve each equation for x, do not approximate:
a. $10^{x}=120$

SOLN: $x=\log _{10}(120)$
b. $2^{x}=1000$

SOLN: $x=\log _{2}(1000)$
c. $\log _{10}(x)=2$

SOLN: $x=10^{2}=100$.
d. $\log _{2}(x-3)=8$

SOLN: $x=2^{8}+3=259$

