Math 40 - Chapter 8 and 10.2 Test - Spring '09 Name \qquad
Show your work for credit. Write all responses on separate paper.
In 1-2, use the method of extracting roots to solve the equation.

1. $(x-1)^{2}=12$
2. $2-(5 x-2)^{2}=11$

In 3-4, use the method of completing the square to solve the equation.
3. $x^{2}+20 x=0$
4. $4 x^{2}+20 x+1=0$
5. Two legs of a right triangle are represented as $2 x-1$ and $4 x$ while the hypotenuse is $5 x-2$. Find all possible values of x.
6. Let x represent the demand (the number the public will buy) for radios and let p represent the price for a radio. Suppose the price decreases linearly with the demand according to the formula $p=(-1 / 3) x+40$. Then the revenue from selling x radishes is $R(x)=(-1 / 3) x^{2}+40 x$.
a. Find the values of $R(9)$ and $R(12)$.
b. How many radios must be sold in order for the revenue to be $\$ 525$?
c. How many radios will be sold in order maximize the revenue?
d. What is the maximum revenue?
7. A point from the first quadrant is selected on the line $y=-\frac{1}{2} x+5$. Lines are drawn from this point parallel to the axes to form a rectangle under the line in the first quadrant. Among all such rectangles, find the length x and height y of the rectangle with the maximum area.
 What is that maximum area?

In problems 8-9, find all solutions to the equation.
8. $(2 x+3)^{2}+7(2 x+3)+12=0 \quad$ 9. $36 x^{4}-37 x^{2}+9=0$

For problems 10 and 11, write an equation for the parabola shown
a. in vertex form: $y=a(x-h)^{2}+k$
b. in descending powers form: $y=a x^{2}+b x+c$.
c. in factored form: $y=a\left(x-\mathrm{r}_{1}\right)\left(x-\mathrm{r}_{2}\right)$
10.

11.

12. Sketch a graph of the parabola $f(x)=-2(4 x-3)(2 x+3)$ and use the graph to solve the inequality, $f(x) \leq 0$ and write the solution using interval notation.
13. Sketch a graph of the parabola $f(x)=-x^{2}+2 x-1$ and use the graph to solve the inequality, $f(x) \leq 0$ and write the solution using interval notation.
14. Find an equation for the circle centered at $(8,15)$ with radius 17 . Find four points on the circumference of the circle with integer coordinates.
15. Find the center and radius of the circle whose equation is $x^{2}-10 x+y^{2}-24 y=0$ and write the equation in standard form: $(x-h)^{2}+(y-k)^{2}=r^{2}$

Math 40 - Chapter 8 and 10.2 Test Solutions.

In 1-2, use the method of extracting roots to solve the equation.

1. $(x-1)^{2}=12$

SOLN: $x-1= \pm \sqrt{12} \Leftrightarrow x=1 \pm 2 \sqrt{3}$
2. $2-(5 x-2)^{2}=11$

SOLN: $(5 x-2)^{2}=-9 \Leftrightarrow 5 x-2= \pm \sqrt{-9} \Leftrightarrow 5 x=2 \pm \sqrt{9} i \Leftrightarrow x=\frac{2}{5} \pm \frac{3}{5} i$
In 3-4, use the method of completing the square to solve the equation.
3. $x^{2}+20 x=0$

SOLN: $x^{2}+20 x+100=100 \Leftrightarrow(x+10)^{2}=100 \Leftrightarrow x+10= \pm 10 \Leftrightarrow x=-10 \pm 10$
so $x=0$ or $x=-20$.
4. $4 x^{2}+20 x+1=0$

SOLN: $x^{2}+5 x+\frac{1}{4}=0 \Leftrightarrow x^{2}+5 x+\left(\frac{5}{2}\right)^{2}=-\frac{1}{4}+\frac{25}{4} \Leftrightarrow\left(x+\frac{5}{2}\right)^{2}=\frac{24}{4}$
$\Leftrightarrow x+\frac{5}{2}= \pm \sqrt{6} \Leftrightarrow x=-\frac{5}{2} \pm \sqrt{6}$
5. Two legs of a right triangle are represented as $2 x-1$ and $4 x$ while the hypotenuse is $5 x-2$. Find all possible values of x.
SOLN: $(2 x-1)^{2}+(4 x)^{2}=(5 x-2)^{2} \Leftrightarrow 4 x^{2}-4 x+1+16 x^{2}=25 x^{2}-20 x+4$
$\Leftrightarrow 0=5 x^{2}-16 x+3 \Leftrightarrow(x-3)(5 x-1)=0 \Leftarrow x=3$ The $x=\frac{1}{5}$ solution doesn't work since all sides must have positive length and $2 / 5-1<0$.
6. Let x represent the demand (the number the public will buy) for radios and let p represent the price for a radio. Suppose the price decreases linearly with the demand according to the formula $p=(-1 / 3) x+40$. Then the revenue from selling x radishes is $R(x)=(-1 / 3) x^{2}+40 x$.
a. Find the values of $R(9)$ and $R(12)$.

SOLN: $R(9)=(-1 / 3) 9^{2}+40(9)=(-1 / 3) 81+360=-27+360=\$ 333$

$$
R(12)=(-1 / 3) 12^{2}+40(12)=(-1 / 3) 144+480=-48+480=\$ 432
$$

b. How many radios must be sold in order for the revenue to be $\$ 525$?

SOLN: $R(x)=525$ means that $(-1 / 3) x^{2}+40 x=525$. Multiplying both sides of the equation by -3 yields $x^{2}-120 x=-1575$. Completing the square leads to $x^{2}-120 x+3600=3600-1575$ or $(x-60)^{2}=2025$ and since x can't be negative, $x=60+45=105$ radios.
c. How many radios will be sold in order maximize the revenue?

SOLN: From the vertex form, $R(x)=(-1 / 3)(x-60)^{2}+1200$ we see that if 60 radios are made then the revenue reaches a maximum value.
d. What is the maximum revenue?

SOLN \$1200.
7. A point from the first quadrant is selected on the line $y=-\frac{1}{2} x+6$. Lines are drawn from this point parallel to the axes to form a rectangle under the line in the first quadrant. Among all such rectangles, find the length x and height y of the rectangle with the maximum area. What is that maximum area?

SOLN: The height of the rectangle is the y coordinate and the width is the x coordinate, so the area is width * height $=x y$
$=x\left(-\frac{1}{2} x+6\right)=-\frac{1}{2} x^{2}+6 x=-\frac{1}{2}\left(x^{2}-12 x\right)=-\frac{1}{2}\left(x^{2}-12 x+36\right)+\frac{1}{2}(36)=-\frac{1}{2}(x-6)^{2}+18$
Now, in fact, the line in the graph is $y=-\frac{1}{2} x+5$ (y intercept in the graph is is 5 , not 6 .)
In this case the area is width * height $=x y$

$$
=x\left(-\frac{1}{2} x+5\right)=-\frac{1}{2} x^{2}+5 x=-\frac{1}{2}\left(x^{2}-10 x\right)=-\frac{1}{2}\left(x^{2}-10 x+25\right)+\frac{1}{2}(25)=-\frac{1}{2}(x-5)^{2}+\frac{25}{2}
$$

So in the case of the equation the rectangle of maximum area is achieved with $3 * 6=18$.
In the case of the graph the rectangle of maximum area is achieved with a $5 * \frac{5}{2}=\frac{25}{2}$
In problems 8-9, find all solutions to the equation.
8. $(2 x+3)^{2}+7(2 x+3)+12=0$

SOLN: Let $y=2 x+3$. Then the equation is $y^{2}+7 y+12=0$, or $(y+3)(y+4)=0$
So by the zero product principle, either $y=-3$ or $y=-4$. Substituting $y=2 x+3$
we have $y=-3$ or $y=-4$ become $2 x+3=-3$ or $2 x+3=-4$ which leads to the solutions $x=-3$ or $x=-7 / 2$.
9. $36 x^{4}-37 x^{2}+9=0$

SOLN: Note that the expression on the left side is quadratic in x^{2}. Also, $36 * 9=18 * 18=27 * 12$ and $27+12=39$ while $18+18=36$, so it looks like the solutions are not rational. Completing the square, $36 x^{4}-37 x^{2}+9=0 \Leftrightarrow x^{4}-\frac{37}{36} x^{2}=-\frac{9}{36}$

$$
\begin{aligned}
& x^{4}-\frac{37}{36} x^{2}+\left(\frac{37}{72}\right)^{2}=\left(\frac{37}{72}\right)^{2}-\frac{18}{72}\left(\frac{72}{72}\right) \Leftrightarrow\left(x^{2}-\frac{37}{72}\right)^{2}=\frac{1369}{5184}-\frac{1296}{5184} \\
& \Leftrightarrow x^{2}-\frac{37}{72}= \pm \sqrt{\frac{73}{5184}} \Leftrightarrow x^{2}=\frac{37}{72} \pm \frac{\sqrt{73}}{72}=\frac{74}{144} \pm \frac{2 \sqrt{73}}{144} \Leftrightarrow x=\frac{ \pm \sqrt{74 \pm 2 \sqrt{73}}}{12}
\end{aligned}
$$

For problems 10 and 11, write an equation for the parabola shown
a. in vertex form: $y=a(x-h)^{2}+k$
b. in descending powers form: $y=a x^{2}+b x+c$.
c. in factored form: $y=a\left(x-\mathrm{r}_{1}\right)\left(x-\mathrm{r}_{2}\right)$

(a)

The vertex is at $\left(-\frac{1}{3},-36\right)$ So the form is
$y=a\left(x+\frac{1}{3}\right)^{2}-36$ and it appears that there's a zero at $x=\frac{5}{3}$ so we substitute $(x, y)=\left(\frac{5}{3}, 0\right)$
and solve for a :
$0=a\left(\frac{5}{3}+\frac{1}{3}\right)^{2}-36 \Leftrightarrow 4 a=36$
Thus the vertex form of the equation is

$$
y=9\left(x+\frac{1}{3}\right)^{2}-36
$$

(b) Expanding the right hand side,

$$
\begin{aligned}
& y=9\left(x^{2}+\frac{2}{3} x+\frac{1}{9}\right)-36 \\
& y=9 x^{2}+6 x-35
\end{aligned}
$$

(c) To find the zeros we solve $y=0$, or

$$
9\left(x+\frac{1}{3}\right)^{2}-36=0 \Leftrightarrow x+\frac{1}{3}= \pm 2
$$

So $y=9\left(x-\frac{5}{3}\right)\left(x+\frac{7}{3}\right)=(3 x-5)(3 x+7)$
12. Sketch a graph of the parabola $f(x)=-2(4 x-3)(2 x+3)$ and use the graph to solve the inequality, $f(x) \leq 0$ and write the solution using interval notation.
SOLN: Evidently, $y \leq 0$ if and only if $x \in\left(-\infty, \frac{3}{2}\right] \cup\left[\frac{3}{4}, \infty\right)$

x	7
-1.5	0
-1.25	8
-1	14
-0.75	18
-0.5	20
-0.375	20.25
-0.25	20
0	18
0.25	14
0.5	8
0.75	0

13. Sketch a graph of the parabola $f(x)=-x^{2}+2 x-1$ and use the graph to solve the inequality, $f(x) \leq 0$ and write the solution using interval notation.
SOLN: $f(x)=-x^{2}+2 x-1=-(x-1)^{2}$ opens downward from a vertex at $(1,0)$ so the inequality is
 true for all real number values of x.
14. Find an equation for the circle centered at $(8,15)$ with radius 17 . Find four points on the circumference of the circle with integer coordinates.
SOLN: $(x-8)^{2}+(y-15)^{2}=17^{2}$ passes through $(0,0),(0,30),(16,30)$ and $(16,0)$.
15. Find the center and radius of the circle whose equation is $x^{2}-10 x+y^{2}-24 y=0$ and write the equation in standard form: $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
\text { SOLN: } \begin{aligned}
& x^{2}-10 x+25+y^{2}-24 y+144=0+25+144 \\
& (z-5)^{2}+(y-12)^{2}=13^{2}
\end{aligned}
$$

is the equation for a circle of radius 13 centered at $(5,12)$.

