Math 40 - Final Exam - Spring ‘09
Name: \qquad
Directions: Show all work for credit. Write all responses on separate paper.
In problem $1-3$, classify each as either a contradiction, an identity, or a conditional equation.

1. $\frac{x-1}{x-3}=2$
2. $\sqrt{(x-4)^{2}}=|x-4|$
3. $\frac{3 x^{2}-8 x+5}{x^{2}-3 x+2}=\frac{4 x-7}{x-2}$
hint: multiplying both sides of an equation by zero doesn't yield an equivalent equation.
4. Given that a line has slope $-\frac{3}{8}$ and y-intercept $(0,9)$, complete the table:

x	0	8	16	24
y				

5. Find an equation for the line passing through $(1,1)$ and parallel to $\frac{x}{12}+\frac{y}{144}=1$.
6. Find an equation for the line passing through $(1,1)$ and perpendicular to $\frac{x}{12}+\frac{y}{144}=1$.
7. Solve the system by graphing each equation and observing the coordinates of the point of intersection: $\begin{aligned} & 2 x+5 y=25 \\ & 2 x-5 y=-5\end{aligned}$
8. The graph at right shows two lines intersecting at $(11,5)$.
Write two equations: one for each line.

$$
\begin{aligned}
5 x-7 y+2 z & =4 \\
8 y-3 z & =29 \\
4 z & =36
\end{aligned}
$$

10. Solve the system using Gaussian elimination on an augmented matrix.

$$
\begin{array}{r}
5 x-3 y+4 z=24 \\
7 x-2 y+z=48 \\
x+4 y-8 z=39
\end{array}
$$

11. A coin collection consists of pennies, nickels and dimes. There are 40 coins. The total value of the coins $\$ 2.53$. The number of dimes is 1 more than twice the number of pennies. Set up and solve a system of equations to find how many of each type of coin there are.
12. Solve the absolute value equation: $\left|x-\frac{1}{2}\right|+\frac{1}{2}=\frac{3}{4}$.

Write the solution set using set notation.
13. Solve the absolute value inequality: $\left|x-\frac{1}{2}\right|+\frac{1}{2}<\frac{3}{4}$.

Write the solution using interval notation.
14. Solve the equation $\left(x+\frac{5}{4}\right)^{2}=\frac{1}{3}$.
15. Solve the inequality $6 x-x^{2}<-1$. Write the solution using interval notation.
16. Evaluate and simplify $f\left(\frac{1}{9}\right)$, where $f(x)=\frac{5}{81}-\sqrt{\frac{10}{729}-x^{2}}$
17. Write an equation for the circle in the $x-y$ plane of radius 8 and center at $(3,10)$.
18. Solve the equation using the method of completing the square: $2 x^{2}-2 x-1=0$
19. Find the vertex and x-intercepts of $y=-5(x-4)^{2}+80$ and graph the parabola.
20. What real numbers are not in the domain of $R(x)=\frac{x^{2}-2}{x^{2}-x-22}$?

SOLUTIONS

In problem $1-3$, classify each as either a contradiction, an identity, or a conditional equation.

1. $\frac{x-1}{x-3}=2 \Leftrightarrow x-1=2(x-3) \Leftrightarrow x-1=2 x-6 \Leftrightarrow x=5$ is conditional
2. $\sqrt{(x-4)^{2}}=|x-4|$ is an identity since, in general, $\sqrt{u^{2}}=|u|$
3. $\frac{3 x^{2}-8 x+5}{x^{2}-3 x+2}=\frac{4 x-7}{x-2} \Leftrightarrow \frac{(3 x-5)(x-1)}{(x-1)(x-2)}=\frac{4 x-7}{x-2} \Leftrightarrow \frac{3 x-5}{x-2}=\frac{4 x-7}{x-2}$ is a contradiction.
4. Given that a line has slope $-\frac{3}{8}$ and y-intercept $(0,9)$, complete the table:

x	0	8	16	24
y	$\mathbf{9}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{0}$

5. Find an equation for the line passing through $(1,1)$ and parallel to $\frac{x}{12}+\frac{y}{144}=1$.

SOLN: $\frac{x}{12}+\frac{y}{144}=1 \Leftrightarrow y=-12 x+144$ has slope -12 , so we plug into the point slope formula and get $y-1=-12(x-1) \Leftrightarrow y=-12 x+13$
6. Find an equation for the line passing through $(1,1)$ and perpendicular to $\frac{x}{12}+\frac{y}{144}=1$.

SOLN: $\frac{x}{12}+\frac{y}{144}=1 \Leftrightarrow y=-12 x+144$ has slope -12 , so the perpendicular slope is $1 / 12$ and we plud into the point slope formula to get $y-1=\frac{1}{12}(x-1) \Leftrightarrow y=\frac{1}{12} x+\frac{11}{12}$
7. Solve the system by graphing each equation and observing the coordinates of the point of intersection: $\begin{aligned} & 2 x+5 y=25 \\ & 2 x-5 y=-5\end{aligned}$
8. The graph at right shows two lines intersecting at $(11,5)$.
Write two equations: one for each line.
SOLN: $y=\frac{4}{11} x+1$ and $y=\frac{1}{2}(x-1)$

$$
\begin{aligned}
5 x-7 y+2 z & =4 \\
8 y-3 z & =29 \\
4 z & =36
\end{aligned}
$$

9. Solve the system by back substitution:

SOLN: $z=9$ implies that $8 y=29+27$ so that $y=7$ and finally, $5 x=4+49-18$ so that $x=7$. The solution is thus $(x, y, z)=(7,7,9)$.
10. Solve the system using Gaussian elimination on an augmented matrix.

$$
\begin{aligned}
& 5 x-3 y+4 z=24 \\
& 7 x-2 y+z=48 \\
& x+4 y-8 z=39 \\
& \text { SOLN: }\left[\begin{array}{ccc:c}
5 & -3 & 4 & 24 \\
7 & -2 & 1 & 48 \\
1 & 4 & -8 & 39
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 4 & -8 & 39 \\
7 & -2 & 1 & 48 \\
5 & -3 & 4 & 24
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 4 & -8 & 39 \\
0 & 30 & -57 & 225 \\
0 & 23 & -44 & 171
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 4 & -8 & 39 \\
0 & 10 & -19 & 75 \\
0 & 23 & -44 & 171
\end{array}\right] \\
& \sim\left[\begin{array}{ccc:c}
1 & 4 & -8 & 39 \\
0 & 10 & -19 & 75 \\
0 & 0 & 3 & 15
\end{array}\right] \text { So } z=5,10 y=75+45 \text { means that } y=12 \text { and so } x=39-48+40=31
\end{aligned}
$$

and so the solution is $(x, y, z)=(5,12,31)$.
11. A coin collection consists of pennies, nickels and dimes. There are 40 coins. The total value of the coins $\$ 2.53$. The number of dimes is 1 more than twice the number of pennies. Set up and solve a system of equations to find how many of each type of coin there are.
SOLN: Let P, N and D represent the numbers of pennies, nickels and dimes, respectively. Then $P+N+D=40, P+5 N+10 D=253$, and $D=2 P+1$. Substituting, we have $3 P+N=39$ and $21 P+5 N=243$. Solving the first of these for N and substituting into the second yields $21 P+5(39-3 P)=243$ or $6 P=48$ so $P=8, D=17$ and $N=15$. To be sure this is $8+75+170=253$ cents.
12. Solve the absolute value equation: $\left|x-\frac{1}{2}\right|+\frac{1}{2}=\frac{3}{4}$.

Write the solution set using set notation.
SOLN: $\left|x-\frac{1}{2}\right|=\frac{1}{4} \Leftrightarrow x-\frac{1}{2}=\frac{1}{4}$ or $x-\frac{1}{2}=-\frac{1}{4} \Leftrightarrow x=\frac{3}{4}$ or $x=\frac{1}{4}$
13. Solve the absolute value inequality: $\left|x-\frac{1}{2}\right|+\frac{1}{2}<\frac{3}{4}$.

Write the solution using interval notation.
SOLN: $\left|x-\frac{1}{2}\right|<\frac{1}{4} \Leftrightarrow-\frac{1}{4}<x-\frac{1}{2}<\frac{1}{4} \Leftrightarrow \frac{1}{4}<x<\frac{3}{4} \Leftrightarrow x \in\left(\frac{1}{4}, \frac{3}{4}\right)$
14. Solve the equation $\left(x+\frac{5}{4}\right)^{2}=\frac{1}{3}$.

SOLN: $x+\frac{5}{4}= \pm \sqrt{\frac{1}{3}} \Leftrightarrow x=-\frac{5}{4} \pm \frac{\sqrt{3}}{3}$
15. Solve the inequality $6 x-x^{2}<-1$. Write the solution using interval notation. SOLN:
$6 x-x^{2}<-1 \Leftrightarrow x^{2}-6 x>1 \Leftrightarrow x^{2}-6 x+9>10 \Leftrightarrow(x-3)^{2}>10 \Leftrightarrow \sqrt{(x-3)^{2}}>\sqrt{10} \Leftrightarrow|x-3|>\sqrt{10}$ This is means $x \in(-\infty, 3-\sqrt{10}) \cup(3+\sqrt{10}, \infty)$
16. Evaluate and simplify $f\left(\frac{1}{9}\right)$, where $f(x)=\frac{5}{81}-\sqrt{\frac{10}{729}-x^{2}}$

SOLN: $f\left(\frac{1}{9}\right)=\frac{5}{81}-\sqrt{\frac{10}{729}-\left(\frac{1}{9}\right)^{2}}=\frac{5}{81}-\sqrt{\frac{10}{729}-\frac{1}{81}}=\frac{5}{81}-\sqrt{\frac{10}{729}-\frac{9}{729}}=\frac{5}{81}-\frac{1}{27}=\frac{2}{81}$
17. Write an equation for the circle in the $x-y$ plane of radius 8 and center at $(3,10)$.

SOLN: $(x-3)^{2}+(y-10)^{2}=64$
18. Solve the equation using the method of completing the square: $2 x^{2}-2 x-1=0$

SOLN: $2 x^{2}-2 x-1=0 \Leftrightarrow x^{2}-x=\frac{1}{2} \Leftrightarrow x^{2}-x+\frac{1}{4}=\frac{3}{4} \Leftrightarrow\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4} \Leftrightarrow x=\frac{1}{2} \pm \frac{\sqrt{3}}{2}$
19. Find the vertex and x-intercepts of $y=-5(x-4)^{2}+80$ and graph the parabola.

SOLN: The vertex is $(4,80)$ and the intercepts are $(0,0)$ and $(8,0)$.

20. What real numbers are not in the domain of $R(x)=\frac{x^{2}-2}{x^{2}-x-22}$?

SOLN: $x^{2}-x-22=0 \Leftrightarrow x^{2}-x+\frac{1}{4}=22+\frac{1}{4} \Leftrightarrow\left(x-\frac{1}{2}\right)^{2}=\frac{89}{4} \Leftrightarrow x=\frac{1}{2} \pm \frac{\sqrt{89}}{2}$
21.

