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Simpson’s Rule is Exact for Quintics.

1 INTRODUCTION.

The error estimate for Simpson’s method may prompt the question, “Yes, but how can we find the error ex-
actly!?” The questioner may then be thunderstruck by the observation that if we knew how to do so in general, then
we wouldn’t speak of “Simpson’s rule for approximating integrals,” but of “Simpson’s rule for evaluating integrals.”
Nevertheless, under certain circumstances we can find exact error. It is well known, for instance, that Simpson’s
rule error is zero whenever the integrand is a polynomial of degree three or less. What is less well known is the fact
that, as we will see, we can easily find the exact error for Simpson’s rule approximations to integrals of polynomial
functions of degree four or five. We accomplish some other things as well, including an extension of the theorem
generally known as the “First Mean Value Theorem for Integrals.” We begin by reviewing some background.

In the text we learn that if K2 is a bound for |f (2)(x)| on the interval [a, b], then the error |ET
n | in replacing

b∫
a
f(t)dt with its n-subdivisions trapezoidal rule approximation

Tn =
b− a
2n

n∑
k=1

[f(xk) + f(xk−1)]

with xk = a+ k(b− a)/n for k = 1, . . . , n, satisfies the inequality

|ET
n | ≤ K2

(b− a)3

12n2
(1)

We also learned that if K4 is a bound for |f (4)| on [a, b], then the error ES
2n in replacing

b∫
a
f(t)dt with its 2n-subdivisions

Simpson’s rule approximation

S2n =
b− a
6n

n∑
k=1

[f(x2n−2) + 4f(x2k−1) + f(x2n)], (2)

where xk = a+ k(b− a)/(2n) for k = 1, . . . , 2n, satisfies the inequality

|ES
2n| ≤ K4

(b− a)5

180(2n)4
(3)

Most textbooks, however, don’t explain why these things are so. If a calculus book says anything at all about
why these inequalities work, they probably just refer us to a numerical analysis book. Those who pursue the matter
find that the numerical analysis books couch the proofs in terms of Lagrange interpolation in the context of gen-
eral Newton-Cotes quadratures1. Most who get that far throw up their hands: the arguments are not easily accessible.

In October 2003, D. Cruz-Uribe and C. J. Neugebauer 2 gave an elementary argument that establishes the trape-
zoidal error bound. They based their note in Mathematics Magazine upon a more advanced–and more thorough–
treatment that they had given earlier3, and in both papers they also discussed error estimates for the trapezoidal rule
applied to functions that might not possess bounded second derivatives. While their methods extend to the cases of
Simpson’s rule in which the integrand possesses just one or two derivatives, Cruz-Uribe and Neugebauer were not
able to apply them to obtain higher order estimates for smoother functions. In particular, they couldn’t use their
methods to derive the error bound for Simpson’s rule. Moreover, they explicitly asked whether it was possible to give
an elementary derivation of error estimates for application of Simpson’s rule to functions possessing either four or,

1F. B. Hildebrand, Introduction to Numerical Analysis, 2nd ed., McGraw-Hill, New York, 1974, or Ralston, A First Course in Numerical
Analysis, McGraw-Hill, New York, 1965.

2D. Cruz-Uribe and C. J. Neugebauer, An elementary proof of error estimates for the trapezoidal rule, Math. Mag. 76 (2003) 303-306.
3Sharp error bounds for the trapezoidal rule and Simpson’s rule, J. Ineq. Pure Appl. Math. 3(4) (2002), article 49
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even better, just three derivatives. Other authors4 give elementary arguments that establish Simpson’s error bound.
But while the argument in Apostol’s text avoids the general context of Newton-Cotes, it still relies on Lagrange
interpolation. Furthermore, the arguments given in these texts tends to break down when we try to apply them to
functions that do not possess fourth derivatives.
In this project, we show first how to exploit Taylor’s theorem with integral remainder to represent the error in an
elementary numerical quadrature as a certain integral. This part of our argument does not depart substantively
from an argument given in the Cruz-Uribe/Neugebauer paper, though the authors do not explicitly mention Taylor’s
theorem. We’ll then see how to evaluate such an integral by using a symmetric derivative. Taylor’s theorem with
Lagrange remainder also plays a role in some of these latter calculations. These methods, which are accessible to
freshmen, allow us to achieve two kinds of results. For starters, we demonstrate how to establish the results that the
numerical analysis books give for the numerical quadratures of elementary calculus:

Theorem. If f is a continuously differentiable function on [a, b] for which f (2)(u) exists at each point u

of (a, b) and if Tn is the n-subdivision trapezoidal rule approximation to
b∫
a
f(t)dt, then there exists ξ in

(a, b) such that
b∫

a

f(t)dt = Tn − f (2)(ξ)
(b− a)3

12n2
.

Theorem. If f is a continuously differentiable function on [a, b] for which f (2)(u) exists at each point u of

(a, b) and if Mn is the n-subdivision Midpoint rule approximation to
b∫
a
f(t)dt, then there exists ξ in (a, b)

such that
b∫

a

f(t)dt = Mn − f (2)(ξ)
(b− a)3

24n2
.

Theorem. If f is a thrice continuously differentiable function on [a, b] for which f (4)(u) exists at each

point u of (a, b) and if S2n is the 2n-subdivision Simpson’s rule approximation to
b∫
a
f(t)dt, then there exists

ξ in (a, b) such that
b∫

a

f(t)dt = S2n − f (4)(ξ)
(b− a)5

180(2n)4
. (4)

From this last equation above, we’ll see that if q(x) =
5∑

k=0

akx
k is a fifth degree polynomial, then

b∫
a

q(t)dt =
{q(a) + 4q[(a+ b)/2] + q(b)}(b− a)

6
− 1

120

[
5a5

(
a+ b

2

)
+ a4

]
(b− a)5 (5)

.
This is the sense in which Simpson’s rule is exact for quintic polynomials.

We will also see how one can use the technique described here to establish error estimates for the integral
approximation schemes of elementary calculus, including not just the trapezoidal rule, but the midpoint rule and
Simpson’s rule as well, even when the integrands are not as smooth as the standard results require. We will not
pursue these latter estimates in any depth, though we’ll develop an underlying principle and give an example to point
you in what I hope is a fruitful direction.

4T. M. Apostol, Calculus, vol. 2, 2nd ed., Blaisdell, Waltham, MA, 1969, and M. P. Fobes and R. B. Smyth, Calculus and Analytic
Geometry, vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1963, and J. M. H. Olmstead, Real Variables, Appleton-Century-Crofts, New York,
1959, Advanced Calculus, Appleton-Century-Crofts, New York, 1961, or R. E. Williamson, R. H. Crowell, and H. F. Trotter, Calculus of
Vector Functions, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 1972.
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2 SOME PRELIMINARY FACTS.

Here are some useful facts that, while generally known and elementary in nature, do not ordinarily appear in the
standard calculus sequence.
First, we note that the mean value theorem takes on a special form for quadratic functions.

Quadratic Mean Value Theorem. If q is a polynomial of degree at most two, then

q(b)− q(a) = q′(ξ)(b− a)

for all real numbers a and b, where ξ = (a+ b)/2.

Everybody knows that continuous functions have the intermediate value property. It may surprise you to learn that
derivative–which need not be continuous functions–also have this property.

Darboux’s Theorem. Suppose that a function f is differentiable on (a, b) and that
f ′(x1) = α < λ < β = f ′(x2) for points x1 and x2 of (a, b). There is a number ξ between x1 and x2 such
that f ′(ξ) = λ.

Darboux’s Theorem has an important consequence.

Corollary (positive Linear Combination Property of Derivatives). Suppose that f is a function
differentiable on (a, b) and that n is a positive integer. For k = 1, 2, . . . , n let θk belong to (a, b), and let
αk be a positive real number. Then there exists ξ in (a, b) such that

n∑
k=1

αkf
′(θk) = f ′(ξ)

n∑
k=1

θk.

In particular, there exists (unspecified) ξ ∈ (a, b) such that we can replace any convex combination (i.e.,
all αk > 0 and

∑
αk = 1) of values that f ′ assumes in (a, b) with the single value, f ′(ξ).

Proof. For k = 1, 2, · · · , n put

λk =
αk
n∑

j=1
αj

Take M to be the largest of the numbers f ′(θ1), f
′(θ2), · · · , f ′(θn) and m to be the smallest. Then

M = f(θk1) and m = f(θk2) for some k1 and k2. The sum
n∑

k=1

λkf
′(θ)k) is a weighted average of the

numbers f ′(θ1), f
′(θ2), · · · , f ′(θn), and as such must lie between M and m. Darboux’s theorem now yields

a number ξ in (a, b) with the desired property.

We now need Taylor’s theorem with remainder, including two standard forms of the remainder found in Stewart (page
756).

Taylor’s Theorem with Integral Remainder. If f is a function whose derivative of order n+ 1 is
continuous throughout some open interval I centered at a and if x ∈ I, then

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

1

n!

x∫
a

f (n+1)(t)(x− t)ndt. (6)

Proof. By the Fundamental Theorem of Calculus,

f(x) = f(a) +

x∫
a

f ′(t)dt

which is equation (6) for n = 0. Expand the integral using integration by parts, taking u = f ′(t),
du = f ′′(t)dt, dv = dt and v = (t− x). Repeat inductively.



Math 1B Project 1 - Page 4 of 10 10/15/14

Taylor’s Theorem with Lagrange Remainder. If f is a function whose derivative of order n+ 1
exists throughout some open interval I centered at a and if x ∈ I, then there exists a point ξ lying between
a and x such that

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξ)

(n+ 1)!
(x− a)(n+1).

We could derive the latter theorem as a corollary to Taylor’s theorem with Integral Remainder if we made the stronger
assumption that f(n + l) is continuous on I. The proof relies on the first mean value theorem for integrals, which
follows. However, we require the theorem in the stronger form that we have given. We omit the proof (the usual one
that appears in calculus texts is based upon Rolle’s theorem).
Finally, we appeal to (and eventually extend) the first mean value theorem for integrals:

First Mean Value Theorem for Integrals. If f and ϕ are both continuous on the interval (a, b)
and if ϕ(t) ≥ 0 for all t in [a, b], then there exists ξ in (a, b) such that

b∫
a

f(t)ϕ(t)dt = f(ξ)

b∫
a

ϕ(t)dt

Proof. If ϕ(t) vanishes for all t in [a, b], the conclusion is trivially true, so we may assume that ϕ takes

on a positive value somewhere in the interval, from which it follows that
b∫
a
ϕ(t)dt > 0. Let m be the

minimum value taken on by the continuous function f in the interval [a, b], and let M be its maximum
value. Then mϕ(t) ≤ f(t)ϕ(t) ≤Mϕ(t) holds for all t in [a, b], implying that

m

b∫
a

ϕ(t)dt ≤
b∫

a

f(t)ϕ(t)dt ≤M
b∫

a

ϕ(t)dt.

Thus,

m ≤

b∫
a
f(t)ϕ(t)dt

b∫
a
ϕ(t)dt

≤M

Because the quotient of the integrals is a value that lies between the minimum and maximum values taken
on by f in the interval [a, b] the intermediate value theorem implies that there must be ξ in (a, b) such
that

f(ξ) =

b∫
a
f(t)ϕ(t)dt

b∫
a
ϕ(t)dt

That is what we wanted to prove!

It should be clear that the conclusion of the first mean value theorem for integrals still follows if we replace the
nonnegativity hypothesis on ϕ with the more general condition that ϕ not change sign in [a, b].

3 ERROR IN SIMPSON’S RULE.

We now turn to the error in a Simpson’s rule approximation for the integral of a general (smooth) function. In what

follows, we always think of the 2n-subdivision Simpson’s rule approximation S2n for
b∫
a
f(t)dt in the form that we gave

in equation (2). This form is not optimal for numerical computation, but it has the merit that each of its summands
corresponds to the (signed) area over the interval [x2k−2, x2k] between the x-axis and a certain parabola.
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In this theorem and its proof, as well as elsewhere, we will have to consider derivatives of functions when the domains
of those functions are closed intervals. Our arguments require continuity of those derivatives throughout those closed
intervals. In this situation, we follow the convention that the derivative of such a function at an endpoint of its
domain is the appropriate one-sided derivative.

Error in Simpson’s Rule. If f is a thrice continuously differentiable function on [a, b] for which
f (4)(u) exists at each u in (a, b) then there is a point ξ in (a, b) such that

b∫
a

f(t)dt = S2n − f (4)(ξ)
(b− a)5

180(2n)4
. (7)

Proof. First consider the error in a single one of the n Simpson’s rule summands. We can simplify
matters appreciably by assuming that the interval associated with that summand is centered at the origin.
We introduce the error function E given on [0, h], where h = (b− a)/(2n), by

E(u) =

u∫
−u

f(t)dt− u

3
[f(−u) + 4f(0) + f(u)],

and we examine E′, E′′, and E(3):

E′(u) =
1

3
[2f(−u)− 4f(0) + 2f(u)] +

u

3

[
f ′(−u)− f ′(u)

]
;

E′′(u) = −1

3
[f(−u)− f(u)]− u

3

[
f ′′(−u) + f ′′(u)

]
;

E(3)(u) =
u

3

[
f (3)(−u)− f (3)(u)

]
.

The function f and its derivatives are all continuous functions (at least in short intervals centered
at the origin), so E and its derivatives are continuous on [0, h] if h is sufficiently small. Moreover,
E(0) = E′(0) = E”(0) = 0. Taylor’s formula with integral remainder thus gives

E(h) = E(0) + E′(0)h+
1

2

h∫
0

E(3)(t)(h− t)2dt

=
1

6

h∫
0

[
f (3)(−t)− f (3)(t)

]
t(h− t)2dt. (8)

Next, we define a function F on [0, h] by

F (t) =

 f (3)(−t)− f (3)(t)
t

if t 6= 0,

−2f (4)(0) if t = 0

We observe that

f (3)(−t)− f (3)(t)t =
f (3)(−t)− f (3)(0)

−t
− f (3)(−t)− f (3)(0)

t
→ −2f (4)(0) (9)

as t → 0+. Combining equation (9) with the continuity of f (3), we find that F is continuous on [0, h].
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This means that we can write

1

6

h∫
0

[
f (3)(−t)− f (3)(t)

]
t(h− t)2dt =

1

6

h∫
0

F (t)t2(h− t)2dt.

and we can invoke the first mean value theorem for integrals to assert the existence of η in (0, h) such
that

E(h) =
F (η)

6

h∫
0

t2(h− t)2dt =
f (3)(−η)− f (3)(η)

180η
h5 (10)

The existence of f (4) then allows us to apply the mean value theorem to the numerator of the right-most
quotient in (10). This produces a number θ in (−η, η) such that

E(h)=
f (4)(θ)(−2η)

180η
h5 = −f (4)(θ)h

5

90

Thus, the kth interval [x2k−2, x2k] associated with Simpson’s rule contains a point θk such that

x2k∫
x2k−2

f(t)dt− b− a
6n

[f(x2k−2) + 4f(x2k−1) + f(x2k)] = −f (4)(θk)
(b− q)5

90(2n)5
. (11)

we can therefore obtain the error in the 2n-subdivision Simpson’s rule approximation by summing the
quantities on the right-hand side of (11). According to Darboux’s theorem, we can find f in (a, b) such
that

n∑
k=1

f (4)(θk) = nf (4)(ξ).

Consequently,

−
n∑

k=1

f (4)(θk)
(b− a)5

90(2n)5
= −(b− a)5

90(2n)5
· f (4)(ξ) = −f

(4)(ξ)(b− a)5

180(2n)4

for a certain ξ in (a, b). And there you have (7).

4 SIMPSON’S RULE FOR QUARTIC AND QUINTIC POLYNOMIALS.

In this section we turn our attention to the behavior of the error term when the integrand is a polynomial of degree
four or five. We demonstrate how to evaluate the error exactly in these cases.

Consider first that if p(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 is a fourth-degree polynomial, then p(4)(x) = 24a4 is

constant. Thus, according to The Error in Simpson’s Rule Theorem, the error in the 2n-subdivision Simpson’s rule

approximation to
b∫
a
p(t)dt is

−p
(4)(ξ)(b− a)5

180(2n)4
= −a4(b− a)5

120n4
.

If follows that for any positive integer n

b∫
a

p(t)dt = S2n −
a4(b− a)5

120n4
.
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There is no need to take n to be anything other than 1, so

b∫
a

p(t)dt = S2 −
a4(b− a)5

120
. (12)

If p(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 is a fifth-degree polynomial, we must be just a little bit more clever.
Recall from (10) that

E(h) =
q(3)(−η)− q(3)(η)

180η
h5

for a certain η lying in (0, h). If q is quintic, the q(3) is quadratic and the Mean Value Theorem for Quadratics allows
us to write

E(h) =
q(4)(0)(−2η)

180η
h5 = −q

(4)(0)

90
h5.

Translating this from the interval [−h, h] to the interval [a, b] and again noting that there is no reason to choose n
different from 1, we conclude that

b∫
a

q(t)dt = S2 −
q(4)[(a+ b)/2]

2880
(b− a)5.

Because q(4)(x) = 120a5x+ 24a4, it follows that

b∫
a

q(t)dt = S2 −
1

120

[
5a5

(
a+ b

2

)
+ a4

]
(b− a)5. (13)

Of course, we could have obtained equation (12) from equation (13) by simply putting a5 = 0. However, we
thought it more interesting to derive (12) independently.

5 SOME EXTENSIONS.

Before proceeding with this final section of the paper, the reader may want to try to use the ideas that underlie the
proof of Theorem 6 to derive the classical error expressions for the trapezoidal rule and midpoint rule approxima-
tions that we gave at the beginning of this paper. We begin the section with the core of just such an argument for each.

The central issue in the proof of the Error in Simpson’s Rule Theorem is the evaluation of the integral that
appears on the right-hand side of equation (8). If we write a zero-degree Taylor polynomial with integral remainder
for the error in a single summand of a trapezoidal approximation,

E(h) =

h∫
−h

f(t)dt− h[f(−h) + f(h)].

We learn that we must evaluate the integral
h∫
0

[f ′(t)tdt. Now we note that we can extend the quotient function

F (t) = [f ′(−t)−f ′(t)]/tdt continuously to the origin by defining F (0) = −2f ′′(0). We can then see in much the same
way as in the proof of the Simpson Error Theorem that there exist η in (0, h) and ξ in (−h, h) such that

h∫
0

[
f ′(−t)− f ′(t)

]
tdt =

f ′(−η)− f ′(η)

η

h∫
0

t2dt = −2f ′′(ξ)h3

3
.
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A somewhat similar problem arises in calculating error in the midpoint rule, the integral in question in this case being

h∫
0

[f(−t)− 2f(0) + f(t)] dt.

Here we introduce the function

F (t) =

 f(−t)− 2f(0) + f(t)

t2
if t 6= 0,

f ′′(0) if t = 0

and–after establishing the continuity of F at the origin by using ”’Hopital’s rule–we discover that

h∫
0

[f(−t)− 2f(0) + f(t)] dt =
f(−η)− 2f(0) + f(η)

η2

h∫
0

t2dt

= f ′′(ξ)
h3

3
(14)

for certain η in (0, h) and ξ in (−h, h). Our results for Simpson’s rule, the trapezoidal rule, and the midpoint rule
differ in form, but there is a common thread in the arguments that establish them. We can isolate this thread by
considering the functions that we designated F in each of the three arguments. In each case, we were able to define
F (0) as the limit of a certain quotient. The limiting values of these quotients are, except for a constant factor, what
many call the first

D1f(x0) = lim
h→0

f(x0 + h)− f(x0 − h)

2h

and the second

D2f(x0) = lim
h→0

f(x0 + h)− 2f(x0) + f(x0 − h)

h2

symmetric derivatives of f at the point x0. Some authors also call the second symmetric derivative the “Schwartz
derivative” or the “Riemann derivative.” It is a well-known fact, which we have reestablished for the sake of com-
pleteness, that if f (k)(x0) exists for k = 1 or 2, then Dkf(x0) also exists and is equal to f (k)(x0). The converse is
not true5 We could have attempted to apply the first mean value theorem for integrals to the integral that appears
in (8). If we had done so, we would have obtained η in(0, h) for which

E(h) =
f (3)(−η)− f (3)(η)

6

h∫
0

t(h− t)2dt.

As in the argument we gave earlier, the form of the numkerator that appears in the fraction here suggests that we
apply the mean value theorem at the same time that we evaluate the integral. Doing these things results in a value
θ in (−η, η) for which

E(h) =
f (4)(θ)(−2η)

6
· h

4

12
= −f (4)(θ)ηh

4

36
.

At this point we realize that we have no way of eliminating the number η from the formula except by passing to
magnitudes. Moreover, the denominator is only two-fifths of what we know it should be. This line of reasoning is
therefore unsatisfactory–not just because it results in an estimate rather than an evaluation, but also because that
estimate is not as tight as it ought to be.
We were able to obtain a stronger result because the difference [f (3)(−t)− f (3)(t)] has a zero at t = 0. Introduction
of the symmetric derivative allowed us to transfer this zero, in the form of a power of t, to the part of the integrand
that we wanted to leave inside the integral when we applied Theorem 5. Similar considerations came into play in our
other arguments. In point of fact, however, it is not the symmetric derivative as such that is crucial to our reasoning,
but the observation that the correct portion of the integrand vanishes in a helpful way. We capture this thread in
the arguments as a theorem:

5A. Zygmund, Trigonometric Series, 2 vols., Cambridge University Press, Cambridge, 1977, pp. 22-23.
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Theorem 7 (Extended Mean Value Theorem for Integrals). Let n be a positive integer. Suppose
that g is (n− 1)-times continuously differentiable on [a, b], that t0 lies in [a, b], that gn(t) exists for every
t in {t0} ∪ (a, b), and that g(k)(t0) = 0 for k = 0, 1, · · · , n− 1. If a function ϕ is continuous on [a, b] and
if the function t → ϕ(t)(t − t0)n does not change sign at any point of (a, b), then there exists η in (a, b)
such that

b∫
a

g(t)ϕ(t)dt =
g(n)(η)

n!

b∫
a

ϕ(t)(t− t0)ndt

Proof. By hypothesis and n− 1 applications of L’Hopital’s rule,

lim
t→t0

g(t)

(t− t0)n
= lim

t→t0

g(n−1)(t)

n!(t− t0)
=

1

n!
lim
t→t0

g(n−1)(t)− g(n−1))t0)
t− t0

=
g(n)(t0)

n!

This means that the function t → g(t)/(t − t0)
n has a removable singularity at t0, so the function

G : [a, b]→ R given by

G(t) =


g(t)

(t− t0)n
if t 6= t0,

1

n!
g(n)(t0) if t = t0

is continuous. Consequently, we can appeal to Theorem 5 to find a number ξ in (a, b) such that

b∫
a

g(t)ϕ(t)dt =

b∫
a

G(t)(t− t0)nϕ(t)dt = G(ξ)

b∫
a

ϕ(t)(t− t0)ndt.

If ξ = t0, we simply take η = t0 = ξ, and we are done. If ξ 6= T0, we apply Taylor’s theorem with Lagrange
remainder to g(ξ) to find an η interior to the intrerval determined by t0 and ξ (and a fortiori interior to
[a, b]) such that

G(ξ) =
1

(ξ − t0)n
g(ξ) =

1

(ξ − t0)n

[
n−1∑
k=0

(ξ − t0)k +
g(n)(η)

n!
(ξ − t0)n

]

=
1

n!
g(n)(η).

We invite the reader to apply Theorem 7 to derive the classical error expressions for the trapezoidal rule and the
midpoint rule, as well as error expressions for the trapezoidal rule, midpoint rule, and Simpson’s rule approximations
to integrals whose integrands are not as smooth as the classical error expressions require. In each case, Taylor’s for-
mula with integral remainder provides an expression that we can use the extended mean value theorem for integrals
to evaluate.

For example, in the case of the midpoint rule and a twice-differentiable function f , Theorem 7 immediately gives
an η in (0, h) for which

h∫
0

[f(−t)− 2f(0) + f(t)]dt =
1

2

[
f ′′(−η) + f ′′(η)

] h∫
0

t2dt,

whence by the corollary to Theorem 2 there is a ξ in (−h, h) satisfying (14).
By way of a further example, if we know that f is a twice continuously differentiable function on [a, b], we can write
the Simpson’s rule error function defined in the proof of Theorem 6 as a first-degree Taylor polynomial with integral
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remainder. Equivalently,

−3E(h) =

h∫
0

([
f ′(−u)− f ′(u)

]
+
[
f ′′(−u) + f ′′(u)

]
u
)

(h− u)du

=

h∫
0

[
f ′(−u)− f ′(u)

]
(h− u)du+

h∫
0

[
f ′′(−u) + f ′′(u)

]
u(h− u)du.

We can then invoke Theorem 7 in conjunction with the corollary to Darboux’s theorem to reduce the first of these
two integrals to −f”(0)h3/3 for some θ in (−h, h). We are then able to combine Theorem 5 with the aforementioned
corollary to reduce the second integral to f ′′)η)h3/3 for a certain η in (−h, h). Dividing by −3, translating to each
of the Simpson’s rule subintervals of [a, b], and summing, we infer that there exist ξ1 and ξ2 in (a, b) for which

ES
2n =

[
f ′′(ξ1)− f ′′(ξ2)

] (b− a)3

18(2n)2
. (15)

Equation (15), for twice continuously differentiable functions, is similar to the estimate given for Lipschitz functions
by Cruz-Uribe and Neugebauer. That (15) is an order two estimate, whereas Cruz-Uribe/Neugebauer’s is order one,
we attribute to the additional smoothness that we have imposed upon the integrand.
If, in addition, we know that f (3)(t) exists and satisfies |f (3)(t)| ≤ K3 for all t in (a, b), we can apply the mean value
inequality immediately before summing and then conclude after the summation that

|ES
2n ≤ K3

(b− a)4

9(2n)3
.

This estimate is not the best available: its denominator is no more than one-eighth of what it should be. Nevertheless,
the estimate has the right order of decay, and it doesn’t depend on the mysteries of an “influence function.” We
therefore have a partial answer to the question raised in Cruz-Uribe/Neugebauer’s book about using elementary
techniques to estimate the errors that may arise when we apply Simpson’s rule to functions whose fourth-order
derivatives are not available.

1. Prove the Quadratic Mean Value Thoerem.

2. (a) Darboux’s theorem has been stated as, “The image of an interval of f ′ is also an interval.” Explain why or
why not this is a good statement of the theorem.

(b) Write a proof of Darboux’s Theorem. In as much as it helps you understand it better, write it in your own
words. Cite your sources.

(c) Find a continuous function for which Darboux’s theorem’s hypotheses is not satisfied and for which the
conclusion also fails. Explain.

(d) Consider

G(t) =

{
1− x2 if x ≤ 0,
x3 if x > 0

Show that this function satisfies the hypothesis and the conclusion of Darboux’s theorem.


