Math 1B
Final Exam, Form: A

Name: \qquad

Directions: Show your work in the space provided. Please box your answers, and give units where appropriate. This exam is worth 50 points. Incorrect, incomplete, and/or missing work may not receive full credit. Good luck!

1. (\#47)Evaluate the integral.(4 pts.)

$$
\int \frac{x^{1 / 3}}{x^{8 / 3}+2 x^{4 / 3}+1} d x
$$

2. Let R be the region of the $x y$-plane bounded by the graphs of $y=x^{3}+7 x, x=2, x=3$, and the x-axis. Set up, but do not evaluate, integrals that represent the volume of the solid generated by revolving R around
(a) the x-axis.(3 pts.)
(b) the y-axis. (3 pts.)
3. Determine the convergence or divergence of the following sequence. If the sequence converges, find its limit. Show enough work to make your reasoning clear.(4 pts.)

$$
a_{n}=\frac{n-1}{n}-\frac{n}{n-1}, \quad n \geq 2
$$

4. Determine whether the following series converges or diverges. Show enough work to make your reasoning clear.(4 pts.)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{n(n+1)}
$$

5. (\#9)Evaluate the integral.(5 pts.)

$$
\int \frac{8 d y}{y^{2} \sqrt{4-y^{2}}} d y
$$

6. Water leaks from a tank at the rate of $t^{2} e^{-t}$ liters per hour for t in $[0,5]$. How much water will leak from the tank in the first two hours?(5 pts.)
7. Find the first three nonzero terms of the Taylor series for $f(x)=\ln (x)$ centered at $x=1$. (5 pts.)
8. Solve the initial-value problem.(4 pts.)

$$
y y^{\prime}-e^{x}=0, \quad y(0)=4
$$

9. Find the area of the region enclosed by the graphs of the functions $f(x)=2 \sin (x), g(x)=\tan (x)$, with $-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$.(4 pts.)
10. Evaluate the definite integral. Give the exact answer.(5 pts.)

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin ^{3} x \cos ^{5} x d x
$$

11. Determine whether the following integral is convergent or divergent. Evaluate it if it is convergent.(4 pts.)

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{9+x^{6}} d x
$$

