Math 1B-Calculus II - Test 4 - Spring '10
Name $\qquad$
Write all responses on separate paper. Show your work for credit. Don't use a calculator.

1. Find the area in the $x y$-plane enclosed by the $x$-axis and the curve described by the parametric equations $\quad x=1+e^{t}$ and $y=3 t-t^{2}$.
2. Consider the parametric equations describing a hyperbola: $\begin{aligned} & x=1+2 \sec t \\ & y=3+4 \tan t\end{aligned}$
a. Write the equation for the hyperbola in standard form by specifying
values for $a, b, h$, and $k$ in the formula $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b}=1$
Hint: Recall the identity $\sec ^{2} t-\tan ^{2} t=1$
b. Find a value of $t$ so that the tangent line at $(x(t), y(t))$ has slope $=4$.
c. Find the value of $\left|\frac{d^{2} y}{d x^{2}}\right|$ where $x=5$.
3. Find the area of the loop formed by $\begin{aligned} & x=t^{2}+2 \\ & y=t\left(t^{2}-9\right)\end{aligned}$

Hint: The loop closes where the curve intersects itself: where we can find two different parameter values, $t_{1} \neq t_{2}$, such that $x\left(t_{1}\right)=x\left(t_{2}\right)$ and $y\left(t_{1}\right)=y\left(t_{2}\right)$.
4. Find the area that lies inside the curve $r=2+\cos \theta$ and outside $r=\cos (2 \theta)$.
5. The area of the surface generated by rotating the polar curve $r=f(\theta)$ for $a \leq \theta \leq b$ about the polar axis (the $x$-axis) is $S=\int_{a}^{b} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$. Use this formula to find the surface area generated by rotating the lemniscate $r^{2}=\cos 2 \theta$ about the polar axis.
6. List the first five terms of the sequence $a_{1}=2, a_{2}=1$ and $a_{n+2}=a_{n}+a_{n+1}$.
7. Determine whether or not the series $\sum_{n=0}^{\infty} \frac{(\sqrt{2})^{n+1}}{2^{n}}$ converges. If it converges, find its sum.
8. Determine whether the series $\sum_{n=1}^{\infty} \frac{2}{4 n^{2}+32 n+63}$ is convergent or divergent by expressing $s_{n}$ as a telescoping sum. If it is convergent, find its sum.
9. Find a value of $c$ such that $\sum_{n=0}^{\infty} e^{c n}=3$
10. Give a convincing argument as to whether the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ is convergent or divergent.
11. Use the integral inequality $s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x$ to estimate the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ to the nearest thousandth.
12. Use the limit comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{2 n+3}$ converges or diverges.
13. Show that if $a_{n}>0$ and $\sum a_{n}$ is convergent, then $\sum \ln \left(1+a_{n}\right)$ is convergent.
14. Test the series $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{(n-2) \pi}{2 n}\right)$ for convergence or divergence.
15. How many terms are needed to approximate the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ to the nearest ten thousandth?

## Math 1B—Calculus II - Test 4 Solutions - Spring '10

1. Find the area in the $x y$-plane enclosed by the $x$-axis and the curve described by the parametric equations $\quad x=1+e^{t}$ and $y=3 t-t^{2}$.

$$
\begin{aligned}
\int_{0}^{3} y \frac{d x}{d t} d t & =\int_{0}^{3}\left(3 t-t^{2}\right) e^{t} d t \begin{array}{cc}
u=3 t-t^{2} & d v=e^{t} d t \\
d u=(3-2 t) d t & v=e^{t}
\end{array} \\
& =\left.\left(3 t-t^{2}\right) e^{t}\right|_{0} ^{3}-\int_{0}^{3}(3-2 t) e^{t} d t \begin{array}{cc}
u=3-2 t & d v=e^{t} d t \\
d u=2 d t & v=e^{t}
\end{array} \\
& =\left(3 t-t^{2}\right) e^{t}-\left.(3-2 t) e^{t}\right|_{0} ^{3}-2 \int_{0}^{3} e^{t} d t \\
& =\left.\left(-t^{2}+5 t-5\right) e^{t}\right|_{0} ^{3}=e^{3}+5 \approx 25.1
\end{aligned}
$$

As the graph below indicates, the area is about 18 units long and has an average height of the something like 1.4 , so the 25.1 approximation is in the pocket:

2. Consider the parametric equations describing a hyperbola: $\begin{aligned} & x=1+2 \sec t \\ & y=3+4 \tan t\end{aligned}$
a. Write the equation for the hyperbola in standard form by specifying
values for $a, b, h$, and $k$ in the formula $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b}=1$
Hint: Recall the identity $\sec ^{2} t-\tan ^{2} t=1$
SOLN: $\frac{(x-1)^{2}}{4}-\frac{(y-3)^{2}}{16}=1$
b. Find a value of $t$ so that the tangent line at $(x(t), y(t))$ has slope $=4$.
$\operatorname{SOLN}: \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{4 \sec ^{2} t}{2 \sec t \tan t}=\frac{2 \sec t}{\tan t}=\frac{2}{\sin t}=4 \Leftrightarrow \sin t=\frac{1}{2} \Leftrightarrow t=\frac{\pi}{2} \pm \frac{\pi}{3}+2 \pi k$
c. Find the value of $\left|\frac{d^{2} y}{d x^{2}}\right|$ where $x=5$.

SOLN: If $x=5$ then $\sec t=2$ so $\cos t=1 / 2$.

$$
\left|\frac{d^{2} y}{d x^{2}}\right|=\left|\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}\right|=\left|\frac{\frac{d}{d t}\left(\frac{2}{\sin t}\right)}{2 \sec t \tan t}\right|=\left|\frac{-2 \csc t \cot t}{2 \sec t \tan t}\right|=\left|\frac{\cos ^{3} t}{\sin ^{3} t}\right|=\left|\frac{\cos t}{\sqrt{1-\cos ^{2} t}}\right|^{3}=\left(\frac{1 / 2}{\sqrt{3} / 2}\right)^{3}=\frac{\sqrt{3}}{9}
$$

3. Find the area of the loop formed by $\begin{aligned} & x=t^{2}+2 \\ & y=t\left(t^{2}-9\right)\end{aligned}$

Hint: The loop closes where the curve intersects itself: where we can find two different parameter values, $t_{1} \neq t_{2}$, such that $x\left(t_{1}\right)=x\left(t_{2}\right)$ and $y\left(t_{1}\right)=y\left(t_{2}\right)$.
SOLN: $x=x \Leftrightarrow t_{1}^{2}+2=t_{2}^{2}+2 \Leftarrow t_{1}=-t_{2}$ and substituting into $y=y \Leftrightarrow t_{1}\left(t_{1}^{2}-9\right)=t_{2}\left(t_{2}^{2}-9\right)$ yields $t_{1}\left(t_{1}^{2}-9\right)=-t_{1}\left(t_{1}^{2}-9\right)$ and since $t_{1} \neq t_{2}$, $t_{1}^{2}-9=9-t_{1}^{2} \Leftrightarrow t_{1}= \pm 3$. So the area is

$$
\begin{aligned}
\int_{-3}^{3} y \frac{d x}{d t} d t & =\int_{-3}^{3} t\left(t^{2}-9\right)(-2 t d t)=4 \int_{0}^{3}\left(9 t^{2}-t^{4}\right) d t \\
& =12 t^{3}-\left.\frac{4 t^{5}}{5}\right|_{0} ^{3}=81\left(4-\frac{12}{5}\right)=\frac{648}{5}=129.6
\end{aligned}
$$

Note that this number comports well with the graph.

4. Find the area that lies inside the curve $r=2+\cos \theta$ and outside $r=\cos (2 \theta)$.
SOLN: The curves don't cut across one another, so we can find the area inside one and outside the other and just compute the difference.
The area inside $r=2+\cos \theta$ is

$$
\begin{aligned}
2\left(\frac{1}{2}\right) \int_{0}^{\pi}(2+\cos \theta)^{2} d \theta & =\int_{0}^{\pi}(2+\cos \theta)^{2} d \theta \\
& =\int_{0}^{\pi} 4+4 \cos \theta+\cos ^{2} \theta d \theta \\
& =4 \theta+4 \sin \theta+\left.\frac{\theta+\sin \theta \cos \theta}{2}\right|_{0} ^{\pi} \\
& =4 \pi+\frac{\pi}{2}
\end{aligned}
$$



While the area inside $r=\cos (2 \theta)$ is $\left.8\left(\frac{1}{2}\right) \int_{0}^{\pi / 4} \cos ^{2} 2 \theta d \theta=\left.4\left(\frac{\theta}{2}+\frac{\cos 2 \theta \sin 2 \theta}{4}\right)\right|_{0} ^{\pi / 4}=\frac{\pi}{2} \right\rvert\,$
So the are (the difference in areas) is $4 \pi$.
5. The area of the surface generated by rotating the polar curve $r=f(\theta)$ for $a \leq \theta \leq b$ about the polar axis (the $x$-axis) is $S=\int_{a}^{b} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$. Use this formula to find the surface area generated by rotating the lemniscate $r^{2}=\cos 2 \theta$ about the polar axis.
SOLN: $\frac{d}{d \theta} r^{2}=2 r \frac{d r}{d \theta}=-2 \sin (2 \theta) \Leftrightarrow \frac{d r}{d \theta}=-\frac{\sin (2 \theta)}{r}=-\frac{\sin (2 \theta)}{\sqrt{\cos 2 \theta}}$ so that

$$
\begin{aligned}
S & =\int_{a}^{b} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=4 \pi \int_{0}^{\pi / 4} \sqrt{\cos 2 \theta} \sin \theta \sqrt{\cos 2 \theta+\frac{\sin ^{2} 2 \theta}{\cos 2 \theta}} d \theta \\
& =4 \pi \int_{0}^{\pi / 4} \sqrt{\cos 2 \theta} \sin \theta \sqrt{\frac{\cos ^{2} 2 \theta+\sin ^{2} 2 \theta}{\cos 2 \theta}} d \theta=4 \pi \int_{0}^{\pi / 4} \sin \theta d \theta \\
& =-\left.4 \pi \cos \theta\right|_{0} ^{\pi / 4}=-4 \pi\left(\frac{\sqrt{2}}{2}-1\right)=(2 \sqrt{2}-2) \pi
\end{aligned}
$$

6. List the first five terms of the sequence $a_{1}=2, a_{2}=1$ and $a_{n+2}=a_{n}+a_{n+1}$.

SOLN: 2,1,3,4,7,11,18,29,47,...
7. Determine whether or not the series $\sum_{n=0}^{\infty} \frac{(\sqrt{2})^{n+1}}{2^{n}}$ converges. If it converges, find its sum.

SOLN: $\sum_{n=0}^{\infty} \frac{(\sqrt{2})^{n+1}}{2^{n}}=\sqrt{2} \sum_{n=0}^{\infty}\left(\frac{\sqrt{2}}{2}\right)^{n}=\frac{\sqrt{2}}{1-\frac{\sqrt{2}}{2}}=\frac{2 \sqrt{2}}{2-\sqrt{2}}$
8. Determine whether the series $\sum_{n=1}^{\infty} \frac{2}{4 n^{2}+32 n+63}$ is convergent or divergent by expressing $s_{n}$ as a telescoping sum. If it is convergent, find its sum.
SOLN:
$\sum_{n=1}^{\infty} \frac{2}{4 n^{2}+32 n+63}=\sum_{n=1}^{\infty} \frac{2}{(2 n+7)(2 n+9)}=\sum_{n=1}^{\infty} \frac{1}{2 n+7}-\frac{1}{2 n+9}=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\cdots=\frac{1}{9}$
9. Find a value of $c$ such that $\sum_{n=0}^{\infty} e^{c n}=3$

SOLN: $\sum_{n=0}^{\infty}\left(e^{c}\right)^{n}=\frac{1}{1-e^{c}}=3 \Leftrightarrow e^{c}=\frac{2}{3} \Leftrightarrow c=\ln \frac{2}{3}$
10. Give a convincing argument as to whether the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ is convergent or divergent. SOLN: It convergent since $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}<\sum_{n=2}^{\infty} \frac{1}{n^{2}-\frac{n^{2}}{4}}=\sum_{n=2}^{\infty} \frac{1}{\frac{3 n^{2}}{4}}=\frac{4}{3} \sum_{n=2}^{\infty} \frac{1}{n^{2}}$ is a p-series with $p=2$.
11. Use the integral inequality $s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x$ to estimate the number of terms needed to approximate the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ to the nearest thousandth.
SOLN: $\int_{n}^{\infty} \frac{1}{x^{2}} d x=\lim _{b \rightarrow \infty}\left(\frac{-1}{x}\right)_{n}^{b}=\lim _{b \rightarrow \infty}\left(\frac{1}{n}-\frac{1}{b}\right)=\frac{1}{n}$ so $\int_{n+1}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{n+1}$ and $s_{n}+\frac{1}{n+1} \leq s \leq s_{n}+\frac{1}{n}$

We want $s_{n}$ to be within half of a thousandth of $s$ so that $\frac{1}{n} \leq \frac{1}{2000} \Leftrightarrow n \geq 2000$ will do it.
To test this, we can use the TI92 (see the screen shot at right.) The first number is $\sum_{n=1}^{2000} \frac{1}{n^{2}} \approx 1.6444$ and the second is $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \approx 1.6449$, which differs from the approximation by precisely half a thousandth.

| [170 $n=1\left(n^{2}\right)$ |  |
| :---: | :---: |
| -1.6444341918287 | 1.64443419183 |
| $=\sum_{n=1}^{\infty}\left[\frac{1}{n^{2}}\right]$ | $\frac{\pi^{2}}{6}$ |
| - $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}\right]$ | 1.6449340668 |
|  |  | Note, however, than the rounding will be off...

12. Use the limit comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{2 n+3}$ converges or diverges. SOLN: Compare with the harmonic series: $\lim _{n \rightarrow \infty} \frac{1 / n}{1 /(2 n+3)}=\lim _{n \rightarrow \infty} \frac{2 n+3}{n}=2$, which is a constant greater than zero, so, by the limit comparison test, since the harmonic series is divergent, this one is too.
13. Show that if $a_{n}>0$ and $\sum a_{n}$ is convergent, then $\sum \ln \left(1+a_{n}\right)$ is convergent.

SOLN Since $\sum a_{n}$ is convergent, we know that $\lim _{n \rightarrow \infty} a_{n}=0$ and so the limit comparison test leads to kind of a L'Hopital's situation: $\lim _{n \rightarrow \infty} \frac{\ln \left(1+a_{n}\right)}{a_{n}}$ in that the numerator and denominator go to zero simultaneously, but $a_{n}$ is not necessarily a differentiable function of $n$. Suppose that it is and that $a_{n}=f(n)$. Then L'Hospital's rule would lead to $\lim _{n \rightarrow \infty} \frac{\ln (1+f(n))}{f(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{(1+f(n)) f^{\prime}(n)}=\lim _{n \rightarrow \infty} \frac{1}{1+f(n)}=1$, which means the series both converge. What if there is no such function? Then try comparison. By definition of the limit, for any $\varepsilon>0$ there exists M such that if $n>\mathrm{M}$ then $a_{n}<\varepsilon$. We can choose $\varepsilon=1$ so that if $n>\mathrm{M}$ then $a_{n}<1$ which means that $0<\log \left(1+a_{n}\right)<a_{n}$. So the series converges by direct comparison.
14. Test the series $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{(n-2) \pi}{2 n}\right)$ for convergence or divergence.

SOLN: $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{(n-2) \pi}{2 n}\right)=0+1-0+\frac{\sqrt{2}}{2}-\cos \left(\frac{3 \pi}{10}\right)+\cdots$ converges by the alternating series test: $\lim _{n \rightarrow \infty} \cos \left(\frac{(n-2) \pi}{2 n}\right)=\cos \left(\lim _{n \rightarrow \infty} \frac{(n-2) \pi}{2 n}\right)=\cos \left(\lim _{n \rightarrow \infty} \frac{\pi-2 \pi / n}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0$
15. How many terms are needed to approximate the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ to the nearest ten thousandth?

SOLN: The series is alternating, so the error in approximation is less than the magnitude of first neglected term. The smallest value of $n$ so that $1 / n!$ is less than a half of a ten thousandths is $n=8$.

