
Math 1B—Calculus II  Fair Game for Test 4 
 
1. By completing the squares for x and y, it is easy to see that the equation  

x2 + 2x + y2 + 6y = 0  describes an ellipse with a center at ( –1, –3).    
a. Write the equation for the ellipse in standard form by specifying  

values for a, b, h, and k in the formula ( ) ( )2 2
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b. Find parametric equations for this ellipse.  Recall the identity 2 2cos sin 1t t+ =  
c. Find an equation for the line tangent to the ellipse at the origin: (x,y) = (0,0). 
d. Sketch a graph for the ellipse and the tangent line together. 

 
2. By completing the squares for x and y, it is easy to see that the equation  

x2 – 6x  – y2 + 8y = 0  describes a hyperbola with a center at ( –3, –4).    
a. Write the equation for the ellipse in standard form by specifying  

values for a, b, h, and k in the formula ( ) ( )2 2
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b. Find parametric equations for this hyperbola.  Recall the identity 2 2sec tan 1t t− =  
c. Find an equation for the line tangent to the hyperbola at the origin: (x,y) = (0,0). 
d. Sketch a graph for the hyperbola and the tangent line together. 

 
3. Consider the polar function r = 4 + sin(4θ).  Find the area enclosed by this curve. 

 

4. The parametric equations 
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 describe a curve which forms a sequence of 

loops around the x-axis in the xy-plane.   
Find the area of the loop closest to the origin. 
 

5. Find the area of the region outside the polar curve r = 2 and  
inside the polar curve r = 4cosθ. 
 

6. Find the length of the curve described by the parametric equations,  
                             x = 1 + 2cos3(t)   and   y = 2 – 3sin2(t) 
 

7. A curve is defined by the parametric equations,  
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Find the length of the arc of the curve from the origin to the nearest point where there is a 
vertical tangent line. 
 

8. Find a value of r so that 
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9. Use the limit comparison test to determine whether 
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10. Find the value of the sum 2
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11. Consider the series ( )
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a. Explain why the sequence 
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 converges to zero, so that the series 
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bound to find an N  so that ( )
( )0

1 100
2 !

n

n

N n

n=

−
∑  approximates ( )

( )0

1 100
2 !

n

n

n

n=

∞ −
∑  to within one 

billionth ( 910− ). 
 

12. Show that the series 1.01
100

1
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+∑  is convergent by using a comparison test and the integral 

test. 
 

13. Determine whether each series converges or diverges.   

a. Using the ratio test, 
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b. Writing out the first few terms,
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in class.)   This series is converging by the alternating series test. 
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divergent: 
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d. 
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∑   This series is divergent.  Use limit comparison with the divergent p-series 
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3. The error in approximating 2
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4. Since ( )
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+∑  is an alternating series and passes the alternating series test for 

convergence, The the error in approximating NS S≈  is less than the first neglected term:  
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( ) 122 3 ! 2 10 6N N+ ≥ × ⇒ ≥ ,  In fact, from MacLaurin series for sine we know this sums to 

( )sin 1 0.841470984808≈ .  Summing to N = 5 is not quite good enough: 
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5. The radius of convergence of  ( )
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So the radius of convergence is R = ½.  What happens at the endpoints? 
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next term is a bound on the error and is much smaller than 0.0001 


