Math 1B—Calculus II Fair Game for Test 4

1. By completing the squares for x and y, it is easy to see that the equation $x^{2}+2 x+y^{2}+6 y=0$ describes an ellipse with a center at $(-1,-3)$.
a. Write the equation for the ellipse in standard form by specifying values for a, b, h, and k in the formula $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b}=1$
b. Find parametric equations for this ellipse. Recall the identity $\cos ^{2} t+\sin ^{2} t=1$
c. Find an equation for the line tangent to the ellipse at the origin: $(x, y)=(0,0)$.
d. Sketch a graph for the ellipse and the tangent line together.
2. By completing the squares for x and y, it is easy to see that the equation $x^{2}-6 \mathrm{x}-y^{2}+8 y=0$ describes a hyperbola with a center at $(-3,-4)$.
a. Write the equation for the ellipse in standard form by specifying
values for a, b, h, and k in the formula $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b}=1$
b. Find parametric equations for this hyperbola. Recall the identity $\sec ^{2} t-\tan ^{2} t=1$
c. Find an equation for the line tangent to the hyperbola at the origin: $(x, y)=(0,0)$.
d. Sketch a graph for the hyperbola and the tangent line together.
3. Consider the polar function $r=4+\sin (4 \theta)$. Find the area enclosed by this curve.
4. The parametric equations $\begin{aligned} & x=|t| \\ & y=\sin t-2 \sin ^{3} t\end{aligned}$ describe a curve which forms a sequence of loops around the x-axis in the $x y$-plane.
Find the area of the loop closest to the origin.
5. Find the area of the region outside the polar curve $r=2$ and inside the polar curve $r=4 \cos \theta$.
6. Find the length of the curve described by the parametric equations,

$$
x=1+2 \cos ^{3}(t) \text { and } y=2-3 \sin ^{2}(t)
$$

7. A curve is defined by the parametric equations,
$x=\int_{0}^{t} \sin \left(u^{2}\right) d u \quad y=\int_{0}^{t} \cos \left(u^{2}\right) d u$
Find the length of the arc of the curve from the origin to the nearest point where there is a vertical tangent line.
8. Find a value of r so that $\sum_{n=0}^{\infty} r^{n}=17$.
9. Use the limit comparison test to determine whether $\sum_{n=10}^{\infty} \frac{4 n^{2}+13 n+3}{3 n^{3}+8 n^{2}+5 n}$ is convergent or not.
10. Find the value of the sum $\sum_{n=1}^{\infty} \frac{3}{9 n^{2}+3 n-2}$
11. Consider the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 100^{n}}{(2 n)!}$.
a. Explain why the sequence $\left\{\frac{100^{n}}{(2 n)!}\right\}_{n=0}^{\infty}$ converges to zero, so that the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 100^{n}}{(2 n)!}$ satisfies the nth term test.
b. Explain why the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 100^{n}}{(2 n)!}$ is convergent and use the alternating series error bound to find an N so that $\sum_{n=0}^{N} \frac{(-1)^{n} 100^{n}}{(2 n)!}$ approximates $\sum_{n=0}^{\infty} \frac{(-1)^{n} 100^{n}}{(2 n)!}$ to within one billionth $\left(10^{-9}\right)$.
12. Show that the series $\sum_{n=100}^{\infty} \frac{1}{n^{1.01}+1}$ is convergent by using a comparison test and the integral test.
13. Determine whether each series converges or diverges.
a. Using the ratio test, $\sum_{n=1}^{\infty} \frac{n^{10}}{2^{n}}$ converges: $\lim _{n \rightarrow \infty} \frac{(n+1)^{10}}{2^{n+1}} \frac{2^{n}}{n^{10}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{10} \frac{1}{2}=\frac{1}{2}<1$
b. Writing out the first few terms, $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{\pi n}{2}\right)}{n}=1+0-\frac{1}{3}-0+\frac{1}{5}+0-\frac{1}{7}+0+\frac{1}{9}-\cdots$ Evidently, $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{\pi n}{2}\right)}{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4}$ (The last equality is familiar from discussion in class.) This series is converging by the alternating series test.
c. $\sum_{n=1}^{\infty} \frac{(n-1)!}{10^{n}}$ This series fails the nth term test, but let's use the ratio test to show it's divergent: $\lim _{n \rightarrow \infty} \frac{n!}{10^{n+1}} \frac{10^{n}}{(n-1)!}=\lim _{n \rightarrow \infty} \frac{n}{10}=\infty>1$
d. $\sum_{n=1}^{\infty} \frac{n^{2.01}-n}{n^{3}+2}$ This series is divergent. Use limit comparison with the divergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^{0.99}}: \lim _{x \rightarrow \infty} \frac{n^{2.01}-n}{n^{3}+2} \frac{n^{0.99}}{1}=\lim _{x \rightarrow \infty} \frac{n^{3}-n^{1.99}}{n^{3}+2}=1$.
14. The error in approximating $S=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ by $S_{99}=\sum_{n=1}^{99} \frac{1}{n^{2}}$ is $\left|S-S_{99}\right|$ where $0.01=\left.\lim _{b \rightarrow \infty} \frac{-1}{x}\right|_{100} ^{b}=\int_{100}^{\infty} \frac{d x}{x^{2}}<\left|S-S_{99}\right|<\int_{99}^{\infty} \frac{d x}{x^{2}}=\left.\lim _{b \rightarrow \infty} \frac{-1}{x}\right|_{99} ^{b}=\frac{1}{99} \approx 0.0101010101$
15. Since $S=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}$ is an alternating series and passes the alternating series test for convergence, The the error in approximating $S \approx S_{N}$ is less than the first neglected term:
$\left|S-S_{N}\right|=\left|\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}-\sum_{n=0}^{N} \frac{(-1)^{n}}{(2 n+1)!}\right|<\frac{1}{(2(N+1)+1)!}$. So, choose N so that
$(2 N+3)!\geq 2 \times 10^{12} \Rightarrow N \geq 6$, In fact, from MacLaurin series for sine we know this sums to $\sin (1) \approx 0.841470984808$. Summing to $N=5$ is not quite good enough:
$\sum_{n=0}^{5} \frac{(-1)^{n}}{(2 n+1)!}=1-\frac{1}{6}+\frac{1}{120}-\frac{1}{5040}+\frac{1}{39916800}-\frac{1}{65570520800} \approx 0.841470984809$
16. The radius of convergence of $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}} x^{2 n}$ is found using the ratio test:
$\lim _{n \rightarrow \infty} \frac{(2 n+2)!x^{2 n+2}}{((n+1)!)^{2}} \frac{(n!)^{2}}{(2 n)!x^{2 n}}=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1) x^{2}}{(n+1)^{2}}=4 x^{2}<1 \Leftrightarrow x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$
So the radius of convergence is $R=1 / 2$. What happens at the endpoints?
17. $\int_{0}^{0.2} \frac{d x}{2+x^{3}}=\frac{1}{2} \int_{0}^{0.2} \frac{d x}{1-\left(-\frac{x^{3}}{2}\right)}=\frac{1}{2} \int_{0}^{0.2} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n}}{2^{n}} d x=\left.\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{2^{n+1}(3 n+1)}\right|_{0} ^{0.2}$
$=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1} 5^{3 n+1}(3 n+1)} \approx \frac{1}{10}-\frac{1}{10000}=0.0999$, which is accurate to within 0.0001 since the next term is a bound on the error and is much smaller than 0.0001
