Math 1B Take-home problems for Test 3 - spring '10
Consider the following three theorems (note ξ is the Greek letter "xi" which is pronounced "zai"):
Theorem 1: If f is a continuously differentiable function on $[a, b]$ for which $f^{\prime \prime}(u)$ exists at each point u of (a, b) and if T_{n} is the n-subdivision trapezoidal rule approximation to $\int_{a}^{b} f(t) d t$, then there exists ξ in (a, b) such that

$$
\int_{a}^{b} f(t) d t=T_{n}-f^{\prime \prime}(\xi) \frac{(b-a)^{3}}{12 n^{2}}
$$

Theorem 2: If f is a continuously differentiable function on $[a, b]$ for which f " (u) exists at each point u of (a, b) and if M_{n} is the n-subdivision midpoint rule approximation to $\int_{a}^{b} f(t) d t$, then there exists ξ in (a, b) such that

$$
\int_{a}^{b} f(t) d t=M_{n}+f^{\prime \prime}(\xi) \frac{(b-a)^{3}}{24 n^{2}}
$$

Theorem 3: If f is a continuously differentiable function on $[a, b]$ for which $f "(u)$ exists at each point u of (a, b) and if $S_{2 \mathrm{n}}$ is the $2 n$-subdivision Simpson rule approximation to $\int_{a}^{b} f(t) d t$, then there exists ξ in (a, b) such that

$$
\int_{a}^{b} f(t) d t=S_{2 n}-f^{(4)}(\xi) \frac{(b-a)^{5}}{180(2 n)^{4}}
$$

These theorems are "existence" theorems in that they don’t say how to find zeta, just that such a ξ exists. Give detailed explanations as to how to find ξ for all three theorems for each of the following integrals and values of n. Use a computing device only sparingly, as needed:

1. $\int_{0}^{1} x^{4} d x$ for $n=2$.
2. $\int_{0}^{1} x^{5} d x$ for $n=2$.
3. $\int_{0}^{1} x^{4} d x$ for $n=4$.
4. $\int_{0}^{1} x^{5} d x$ for $n=4$.
5. $\int_{0}^{1} \frac{1}{x^{2}+1} d x$ for $n=4$.
6. $\int_{0}^{\pi / 2} \sin ^{4}(x) d x$ for $n=4$.
