Math 1B - Approximating sums for integrals on various calculators and CAS's.

Consider the problem of approximating $\int_{0}^{\pi} \sec \left(\frac{x}{3}\right) d x$ by sampling n evenly spaced subintervals at midpoints.
The length of each subinterval is then

$$
\Delta x=\frac{\pi-0}{n}=\frac{\pi}{n}
$$

so the right endpoint of the ith subinterval in the partition is

$$
x_{i}=a+i \Delta x=0+\frac{i \pi}{n}=\frac{i \pi}{n}
$$

This means that the midpoint of the i th subinterval is

$$
\bar{x}_{i}=\frac{i \pi}{n}-\frac{\Delta x}{2}=\frac{i \pi}{n}-\frac{\pi}{2 n}=\frac{(2 i-1) \pi}{2 n}
$$

So the sum we're seeking to evaluate has the form

$$
\sum_{i=1}^{n} \sec \left(\frac{\bar{x}_{i}}{3}\right) \Delta x=\frac{\pi}{n} \sum_{i=1}^{n} \sec \left(\frac{(2 i-1) \pi}{6 n}\right)
$$

So let's implement this formula on the TI83.
Start by finding the command seq in the catalog:

Then, for $n=6$, you enter the following:

Which says to form the sequence of values of $\frac{1}{\cos (x)}$ as x goes from the first midpoint of the first interval, $\frac{\pi}{12}$, to the midpoint of the $6^{\text {th }}$ interval, $\frac{11 \pi}{12}$, by steps of size, $\frac{\pi}{6}$ and then store this sequence in L_{2}.

All that remains is then to multiply the sum of these values by $\frac{\pi}{6}$:

Note that you can also get the seq() and sum() functions from the list menu.
On the TI89 it's a bit simpler. Enter $\frac{\pi}{6}$ and then find "sum" on the calculus menu and follow your nose.

If you're in exact mode, you'll get something like this:

$\pi 6 * \Sigma(1) \mathrm{Cos}(2 * i-1) * \pi / 36 \ldots$

Which, if you arrow up and then right arrow, you can scroll through to see that it's

$$
\frac{\left(\left(\left(\left(\sin \left(\frac{7 \pi}{36}\right) \cdot \sqrt{6}+1\right) \cdot \cos \left(\frac{\pi}{36}\right)+\sin \left(\frac{7 \pi}{36}\right)\right) \cdot \cos \left(\frac{5 \pi}{36}\right)+\sin \left(\frac{7 \pi}{36}\right) \cdot \cos \left(\frac{\pi}{36}\right)\right) \cdot \cos \left(\frac{7 \pi}{36}\right)+\sin \left(\frac{7 \pi}{36}\right) \cdot \cos \left(\frac{\pi}{36}\right) \cdot\right.}{6 \cdot \sin \left(\frac{7 \pi}{36}\right) \cdot \cos \left(\frac{\pi}{36}\right) \cdot \cos \left(\frac{5 \pi}{36}\right) \cdot \cos \left(\frac{7 \pi}{36}\right)}
$$

Yikes! So you want to be in approximate mode, or press the green diamond button before pressing Enter:

Which approximation agrees with the TI83.

