Math 1B - Calculus II - Test \#2 - Spring '10
Name \qquad
Show your work for credit. Write all responses on separate paper. Do not use a calculator.

1. The voltage V at time t of house current is given by $V(t)=C \sin (120 \pi t)$ where t is in seconds and C is a constant amplitude. The square root of the average value of V^{2} over one period of oscillation (one cycle) is called the root-mean-square voltage, abbreviated RMS. This is what the voltage meter on a house records. For house current, find the RMS in terms of the constant C.
2. The solid torus is the figure obtained by rotating the disk $(x-b)^{2}+y^{2} \leq a^{2}$ around the y-axis. Find its volume by the method of shells. (Hint: Substitute for $x-b$. Note that the answer is the area of the disk multiplied by the distance travelled by the center as it revolves.)
3. For any integer $n \geq 0$, consider $\int \tan ^{n+2} x d x$
a. Use the substitution $\tan ^{2} x=\sec ^{2} x-1$ to show that $\int \tan ^{n+2} x d x=\frac{1}{n+1} \tan ^{n+1} x-\int \tan ^{n} x d x$
b. Simplify $\int \tan ^{4} x d x$
4. Consider $\int \sec x d x$
a. Show that $\sec x=\frac{\cos x}{1-\sin ^{2} x}$
b. Substitute $\sec x=\frac{\cos x}{1-\sin ^{2} x}$ into $\int \sec x d x$, then substitute for $\sin x$ and $\operatorname{simplify}$ the integral using partial fractions. Write your final answer in terms of x.
c. Convert the formula into the more familiar one by multiplying the fraction in the answer by $1=\frac{1+\sin x}{1+\sin x}$ (recall that $(1 / 2) \ln u=\ln \sqrt{u})$
5. Consider the volume generated by rotating the area below $y=\cos x$ for $0 \leq x \leq \frac{\pi}{2}$ about the y-axis.
a. Compute the volume by the method of shells.
b. Show that the height h to which the volume must be filled to be half full (by volume) satisfies the equation $4 h \sin (h)+4 \cos (h)-2-\pi=0$
6. A container is formed by revolving the curve $y=x^{2}$ for $0 \leq x \leq 4$ about the y-axis (where x and y are both measured in meters.) How much work is required to pump a fluid with weight density $1000 \mathrm{~N} / \mathrm{m}^{3}$ out the top?
7. Simplify $I=\int_{0}^{x} e^{u} \sin u d u$. Hint: use integration by parts twice so that the integrand recurs, then solve for I.
8. Simplify $\int_{0}^{1} \frac{x^{2}+3 x+3}{\left(x^{2}+2 x+2\right)(x+1)} d x$

Math 1B - Calculus II - Test \#2 Solutions - Spring '10

1. The voltage V at time t of house current is given by $V(t)=C \sin (120 \pi t)$ where t is in seconds and C is a constant amplitude. The square root of the average value of V^{2} over one period of oscillation (one cycle) is called the root-mean-square voltage, abbreviated RMS. This is what the voltage meter on a house records. For house current, find the RMS in terms of the constant C.
SOLN: The period of oscillation can be found by computing t so that $0 \leq 120 \pi t \leq 2 \pi \Leftrightarrow 0 \leq t \leq \frac{1}{60}$
Then RMS =
$\sqrt{\frac{C^{2}}{1 / 60-0} \int_{0}^{1 / 60} \sin ^{2} 120 \pi t d t}=C \sqrt{60 \int_{0}^{1 / 60} \frac{1-\cos 240 \pi t}{2} d t}=C \sqrt{30 t-\left.\frac{\sin 240 \pi t}{8}\right|_{0} ^{1 / 60}}=C \sqrt{\frac{1}{2}-0}=\frac{C \sqrt{2}}{2}$
2. The solid torus is the figure obtained by rotating the disk $(x-b)^{2}+y^{2} \leq a^{2}$ around the y-axis. Find its volume by the method of shells. (Hint: Substitute for $x-b$. Note that the answer is the area of the disk multiplied by the distance travelled by the center as it revolves.)
SOLN: We seek r and h in $V=2 \pi \int_{b-a}^{b+a} r h d x$. The radius $r=x$ and the height $h=2 y=2 \sqrt{a^{2}-(x-b)^{2}}$ so that $V=4 \pi \int_{b-a}^{b+a} x \sqrt{a^{2}-(x-b)^{2}} d x$. Substituting $u=x-b$ we get

$$
V=4 \pi \int_{-a}^{a}(u+b) \sqrt{a^{2}-u^{2}} d u=4 \pi \int_{-a}^{a} u \sqrt{a^{2}-u^{2}} d u+4 \pi b \int_{-a}^{a} \sqrt{a^{2}-u^{2}} d u
$$

The first integral has an odd integrand over an interval centered on the origin, so it's zero.
The second integral is half the area of a circle of radius a, so $V=(2 \pi b)\left(\pi a^{2}\right)$
3. For any integer $n \geq 0$, consider $\int \tan ^{n+2} x d x$
a. Use the substitution $\tan ^{2} x=\sec ^{2} x-1$ to show that $\int \tan ^{n+2} x d x=\frac{1}{n+1} \tan ^{n+1} x-\int \tan ^{n} x d x$

SOLN: $\int \tan ^{n+2}(x) d x=\int \tan ^{2}(x) \tan ^{n}(x) d x=\int\left(\sec ^{2}(x)-1\right) \tan ^{n}(x) d x$ $=\int \sec ^{2}(x) \tan ^{n}(x) d x-\int \tan ^{n}(x) d x$
Substitute $u=\tan x$ so that $d u=\sec ^{2}(x) d x$ and the integral is then

$$
\int u^{n} d u-\int \tan ^{n} x d x=\frac{1}{n+1} \tan ^{n+1} x-\int \tan ^{n} x d x
$$

b. Simplify $\int \tan ^{4} x d x$

SOLN: $\int \tan ^{4}(x) d x=\frac{\tan ^{3} x}{3}-\int \tan ^{2}(x) d x=\frac{\tan ^{3} x}{3}-\tan x+\int d x=\frac{\tan ^{3} x}{3}-\tan x+x+c$
4. Consider $\int \sec x d x$
a. Show that $\sec x=\frac{\cos x}{1-\sin ^{2} x}$

SOLN: $\sec x=\frac{1}{\cos x}=\frac{\cos x}{\cos ^{2} x}=\frac{\cos x}{1-\sin ^{2} x}$
b. Substitute $\sec x=\frac{\cos x}{1-\sin ^{2} x}$ into $\int \sec x d x$, then substitute for $\sin x$ and simplify the integral using partial fractions. Write your final answer in terms of x.

SOLN:

$$
\int \sec x d x=\int \frac{\cos x}{1-\sin ^{2} x} d x=\int \frac{d u}{1-u^{2}}=\int \frac{d u}{(1+u)(1-u)}=\frac{1}{2} \int \frac{d u}{1+u}+\frac{1}{2} \int \frac{d u}{1-u}
$$

$$
=\frac{1}{2} \ln |1+u|-\frac{1}{2} \ln |1-u|+c=\frac{1}{2} \ln |1+\sin x|-\frac{1}{2} \ln |1-\sin x|+c
$$

c. Convert the formula into the more familiar one by multiplying the fraction in the answer by $1=\frac{1+\sin x}{1+\sin x}$ (recall that $(1 / 2) \ln u=\ln \sqrt{u}$)
SOLN:

$$
\begin{aligned}
\int \sec x d x & =\ln \sqrt{|1+\sin x|}-\ln \sqrt{|1-\sin x|}+c=\ln \sqrt{\left.\frac{1+\sin x}{1-\sin x} \right\rvert\,}+c=\ln \sqrt{\left|\frac{1+\sin x}{1-\sin x}\right| \frac{1+\sin x}{1+\sin x}}+c \\
& =\ln \sqrt{\frac{(1+\sin x)^{2}}{1-\sin ^{2} x}}+c=\ln \sqrt{\left(\frac{1+\sin x}{\cos x}\right)^{2}}+c=\ln \left|\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right|+c=\ln |\sec x+\tan x|+c
\end{aligned}
$$

5. Consider the volume generated by rotating the area below $y=\cos x$ for $0 \leq x \leq \frac{\pi}{2}$ about the y-axis.
a. Compute the volume by the method of shells.

SOLN:

$$
2 \pi \int_{0}^{\pi / 2} r h d x=2 \pi \int_{0}^{\pi / 2} x \cos x d x=2 \pi\left(\left.x \sin x\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} \sin x d x\right)=2 \pi\left(\frac{\pi}{2}+\left.\cos x\right|_{0} ^{\pi / 2}\right)
$$

$$
=2 \pi\left(\frac{\pi}{2}-1\right)=\pi^{2}-2 \pi=\pi(\pi-2)
$$

b. Show that the height h to which the volume must be filled to be half full (by volume) satisfies the equation $4 h \sin (h)+4 \cos (h)-2-\pi=0$
SOLN: $2 \pi \int_{0}^{h} x \cos x d x=\frac{\pi(\pi-2)}{2} \Leftrightarrow x \sin x+\left.\cos x\right|_{0} ^{h}=\frac{\pi-2}{4} \Leftrightarrow h \sin (h)+\cos (h)-1=\frac{\pi-2}{4}$

$$
\Leftrightarrow 4 h \sin (h)+4 \cos (h)-2-\pi=0
$$

6. A container is formed by revolving the curve $y=x^{2}$ for $0 \leq x \leq 4$ about the y-axis (where x and y are both measured in meters.) How much work is required to pump a fluid with weight density $1000 \mathrm{~N} / \mathrm{m}^{3}$ out the top?

SOLN:

$$
W=\int d W=1000 \int d F=1000 \int(16-y) d V=1000 \pi \int_{0}^{4}(16-y) y d y=\left.1000 \pi\left(8 y^{2}-\frac{y^{3}}{3}\right)\right|_{0} ^{4}
$$

$$
=1000 \pi\left(128-\frac{64}{3}\right)=\frac{320000 \pi}{3} \text { Joules }
$$

7. Simplify $I=\int_{0}^{x} e^{u} \sin u d u$. Hint: use integration by parts twice so that the integrand recurs, then solve for I.

$$
I=\int_{0}^{x} e^{u} \sin u d u=e^{x} \sin x-0-\int_{0}^{x} e^{u} \cos u d u=e^{x} \sin x-e^{x} \cos x+1-\int_{0}^{x} e^{u} \sin u d u
$$

SOLN:

$$
2 I=e^{x} \sin x-e^{x} \cos x+1 \Leftrightarrow I=\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x+1\right)
$$

8. Simplify $\int_{0}^{1} \frac{x^{2}+3 x+3}{\left(x^{2}+2 x+2\right)(x+1)} d x$

SOLN:

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2}+3 x+3}{\left(x^{2}+2 x+2\right)(x+1)} d x & =\int_{0}^{1} \frac{1}{x^{2}+2 x+2}+\frac{1}{x+1} d x=\int_{0}^{1} \frac{1}{(x+1)^{2}+1} d x+\ln |x+1|_{0}^{1} \\
& =\left.\arctan (x+1)\right|_{0} ^{1}+\ln 2=\arctan (2)-\frac{\pi}{4}+\ln 2
\end{aligned}
$$

