Math 1B -- Chapter 5 - A Sampling of Fair Game for Spring '10 Test

1. Find the approximating sum for $\int_{0}^{2}\left(-16 t^{2}+64\right) d t$ with $n=2$
a. Assuming subintervals of equal length, find the value of Δt and t_{i}.
b. Using right endpoints as sample points in a Riemann sum with subintervals of equal length.
c. Using left endpoints as sample points in a Riemann sum with subintervals of equal length.
d. Using midpoints as sample points in a Riemann sum with subintervals of equal length.
2. Use the definition of the definite integral to evaluate $\int_{0}^{2}\left(-16 t^{2}+64\right) d t$ as a limit of Riemann sums. Do not use the evaluation theorem. Recall that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$,
$\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ and $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
3. Evaluate the integral. Clearly indicate any substitution, or integration by parts.
a. $\int_{-2}^{2}(5 x+2)^{3} d x$
b. $\int_{0}^{\pi / 4} \sec \theta \tan \theta d \theta$
c. $\int_{0}^{1} x^{2} \sin \left(x^{3}\right) d x$
d. $\int_{0}^{\pi} x \sin (5 x) d x$
4. Let $A(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown below:

a. Make a table of values showing the value of $A(x)$ at $x=0,1,2,3$ and estimating values of $A(x)$ at $x=3.5,4,4.5,5,5.5$ and 6.
b. Sketch a graph for $A(x)$ on $0 \leq x \leq 6$.
c. What is the global minimum for $A(x)$? Estimate the global maximum.
5. Let $A(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown below:

d. Make a table of values showing the value of $A(x)$ at $x=0,2,3$ and 4
e. Sketch a graph for $A(x)$ on $0 \leq x \leq 6$.
f. What are the global maximum and the global minimum for $A(x)$?
6. Consider the definite integral written as a limit of a Riemann sum:

$$
\int_{0}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{k=1}^{n}\left(\frac{3 k}{n}\right)^{2}
$$

a. What is Δx here? What does that mean about the value of b ?
b. What is $f(x)$?
c. What is c_{k} ?
d. Compute the value of the limit.
7. Write a definite integral which is equivalent to this limit of a Riemann sum:

$$
\lim _{n \rightarrow \infty} \frac{1}{2 n} \sum_{k=1}^{n} \sqrt{\frac{k}{n}}
$$

8. Simplify each expression (hint: none of these is difficult):
a. $\int_{0}^{\pi / 2} \frac{d}{d x} \sin ^{5} x d x$
b. $\frac{d}{d t} \int_{0}^{t} \sin ^{5} x d x$
c. $\frac{d}{d u} \int_{0}^{\pi / 2} \sin ^{5} u d u$
d. $\int_{0}^{\pi} \frac{d}{d u} e^{u / \pi} \sin u d u$
e. $\frac{d}{d y} \int_{0}^{y} e^{y / \pi} \sin y d y$
f. $\frac{d}{d x} \int_{0}^{\pi} e^{x / \pi} \sin x d x$
9. Use substitution to simplify the following definite integrals. For each, explicitly state what the components of your substitution are (on separate paper):
a. $\int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta$
$u=\tan \theta \quad d u=$ \qquad ?
b. $\int_{-1}^{\theta} x^{2} \cos \left(x^{3}+1\right) d x$, where $\theta=\sqrt[3]{\pi / 2-1} \quad u=_\quad ? d u=$ \qquad
10. $\int_{0}^{\pi / 4} \frac{\tan ^{2} \sqrt{x}}{\sqrt{x}} d x\left(\right.$ hint: $\left.\tan ^{2} \theta+1=\sec ^{2} \theta\right) \quad u=$ \qquad ? $d u=$ \qquad ?
11. Evaluate the definite integral $\int_{0}^{e} \frac{1}{5 x \ln (5 x)} d x$.
12. Evaluate the definite integral $\int_{0}^{\pi / 15} \tan (5 x) d x$. hint: $\tan \theta=\frac{\sin \theta}{\cos \theta}$.
13. Consider the area of the region bounded by $y=x^{2}$ and $y=2-|x|$.
a. Sketch a graph illustrating the region.
b. By integrating over x and using symmetry, as appropriate.
c. By integrating over y and splitting the region into 2 pieces, as appropriate.
14. Consider the area of the region bounded by $y=(x-1)^{2}$ and $y=1+\sin \left(\frac{\pi x}{2}\right)$.
a. Sketch a graph illustrating the region.
b. Compute the volume of revolution generated by revolving the region about the x-axis. Use either the shell method or the washer method, whichever seems easier.
c. Compute the volume of revolution generated by revolving the region about the y-axis. Use either the shell method or the washer method, whichever seems easier.
15. Find the volume generated by revolving the area bounded by $y=1+\sin x$ and $y=\cos x$ for $0 \leq x \leq \pi$ about the line $y=-1$.
16. A hole of radius r is drilled through the center a sphere of radius $R>r$. Find the volume of the remaining portion of the sphere.
