
Math 1A – Calculus – Chapter 4 Take-home problems  Name__________________ 
Show your work for credit.  Do not copy other peoples work.  Describe calculator use explicitly.  What 
buttons did you push to get your results? 
 
1. What calculator(s) are you using to solve the problems on this paper? 
 

2. Suppose a particle is moving along the curve 
4 /8xy x e−= ⋅  so that 2dx

dt
=  .  Find dy

dt
 when x = 3.  

Approximate to four significant digits. 
 

3. Find the coordinates of the inflection points  for 
2 /8x xy e −= accurate to four significant digits  

 
4. Estimate the left-most coordinates on the curve 4 22 , lnx t t y t t= − = + .  Can you find exact values 

for these coordinates? 
 

5. Use a graph to estimate the value of the limit.  Then use L’Hospital’s rule to find the exact value 
value:  ( ) ( )sec 2

/4
lim tan x

x
x

π→
. 

 
6. Find the coordinates of the point on curve ( )arctany x=  closest to the point (0,2). 

 
7. Find the value(s) of x on the interval [0,2] that satisfy the conclusions of the mean value theorem 

for ( )3 1y x x x= − − .  Approximate to 4 significant digits. 
 

8. Investigate Newton’s method for the family of cubic polynomials, ( ) ( )( )22f x x x c= + +  
a. Can you find a two-cycle in the case where c = –1 ? 
b. For values of c between 0 and 0.2, what dynamics do you observe from the initial value 

2
3

x = − ?   



Math 1A – Calculus – Chapter 4 Take-home problems Solutions  
 
1. What calculator(s) are you using to solve the problems on this paper? 

SOLN:  I’ll be using a variety including TI82, TI83, TI85, TI86, TI89, TI92.  Should have an 
HP…. 

2. Suppose a particle is moving along the curve 
4 /8xy x e−= ⋅  so that 2dx

dt
=  .  Find dy

dt
 when x = 3.  

Approximate to four significant digits. 

SOLN:  ( )
4

4 4 4
4 /8

/8 /8 /8 42
2 2

x
x x xdy x ey x e e e x

dx

−
− − −= ⋅ ⇒ = − = −   

so that ( ) ( )
4

4
/8

4 /8 42 2
2

x
xdy dx dy dx e x e x

dt dt dx dt

−
−= = − = − .  When x = 3, 

( )81/8 10.1252 81 79dy e e
dt

− −= − = − .  So who needs a calculator?  Well, you can approximate this using 

a TI82 to get dy/dt approximately –0.0031651585   

 
 

3. Find the coordinates of the inflection points  
for 

2 /8x xy e −= accurate to four significant digits 

SOLN:  
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x x x x

x x x x

x x

dy xe e
dx

d y x e e
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x e

− −

− −

−

 = = − ⇒ 
 

 = − − 
 
  = − −     

  

changes sign where 
2 11 4 2

4 4
x x − = ⇔ = ± 

 
.  Thus the coordinates of the inflection points are 

( ) ( ) ( ) ( )3/2 3 3/2 32, 2, , 6, 6,e e e e= = .  Again, who needs a calculator?  Oh, to estimate accurate to 

four significant digits, a calculator is handy.  The TI82 yields  so the points are 
(2,4.482) and (6,4.482).  To be sure, here’s a graph as displayed on the TI92+: (baseline along 
y=1.)   
 

4. Estimate the left-most coordinates on the 
curve 4 22 , lnx t t y t t= − = + .  Can you find 
exact values for these coordinates? 
SOLN:  At the left-most coordinates we’ll 

have 
( )

( )

4 23

2

4/ 4 40
/ 1 1/ 1

4 1 0

t tdx dx dt t t
dy dy dt t t

t t

−−
= ⇔ = =

+ +

= − =

 

and  
 



since t = 0 is not in the domain of y, it must be where t = 1 so that (x, y) = (–1,1).  Well, darn…who 
needs these stinking calculators?  They’re good for a graph.  Below we see the trace is nearly to 
the far left point, which corroborates our previous result convincingly:   
 

5. Use a graph to estimate the value of the limit.  
Then use L’Hospital’s rule to find the exact 
value value:  ( ) ( )sec 2

/4
lim tan x

x
x

π→
. 

SOLN:  Graphing the function on the interval 
(0, / 2)π   and tracing (it starts in the middle)  
we see the limit appears to be a local max near 
(0.792, 0.368)   

This is a 1∞  situation, so we look at 

( ) ( ) ( )
( ) ( ) ( )

2

/4 /4 /4 /4 /4

sec
ln tan 1tanlim ln lim sec 2 ln tan lim lim lim
cos 2 2sin 2 2sin 2 sin cosx x x x x

x
x xy x x
x x x x xπ π π π π→ → → → →

= = = =
− −

( )2/4

1lim 1
sin 2x xπ→

= = −
−

, which means that 1 0.36788y
e

= ≈ , sure enough! 

6. Find the coordinates of the point on curve 
( )arctany x=  closest to the point (0,2). 

SOLN:  The situation is depicted at right.  
Evidently the point nearest (0,2) is where the 
normal to the curve passes through (0,2).  The 
slope of the tangent at x=a is ( ) 121y a

−
= +  so 

the slope of the normal is ( )21y a= − +  so the  

equation of the normal line through (0,2) and (a, aarctan(a)) is ( )22 1y a x= − + .  Requiring that 

the normal actually passes through the point of normalcy, ( ) ( )2 3arctan 2 1 2a a a a a a= − + = − − + , 

which is true iff ( ) 3arctan 2 0a a a a+ + − = .  This is an equation not easily solvable by hand.  We 

could try Newton’s method.  You’d iterate ( )
( )

3

1
2

2

arctan 2

arctan 3 1
1

n n n n
n n

n
n n

n

x x x x
x x xx x

x

+

+ + −
= −

+ + +
+

.  Yikes.  You  

might find it more user-friendly 
to use the “solve” feature on the 
TI89 as shown at right, where 
we see 0.835442x ≈  with an 
ominous warning about more 
solutions possibly existing 
(obviously there aren’t more.)  
Using zoom square gives a more 
reasonable picture that this is, in 
fact, where the nearest point to 
(0,2) on the curve is. 

 



 
7. Find the value(s) of x on the interval [0,2] that satisfy the conclusions of the mean value theorem 

for ( )3 1y x x x= − − .  Approximate to 4 significant digits. 

SOLN:  Solve for x: ( ) ( ) ( ) 3 32 0 1 3' 4 2 1 5
2 0 2 2

f f
f x x x x x

−
= ⇔ − − = ⇔ − =

−
.  Using Tartaglia’s 

method we note that, for all a and b, ( ) ( )3 3 33a b ab a b a b− + − = −  so let x = a – b and set 

1 13
2 6

ab b
a

= − ⇔ = −  and substitute into 
3

3 3 3 6 33 1 3 3 1
2 6 2 2 216

a b a a a
a

 − = ⇔ − − = ⇔ − = − 
 

 to 

which we add 
23

4
 
 
 

 to complete the square and get 
2

3
2

3 1 9 241 723
4 216 16 432 36

a − = − + = = 
 

 whence 

3 33 723 1 162 6 723
4 36 6

a a−
− = ⇔ = −   This means that 

3

1

162 6 723
b = −

−
  

whence 3

3

1162 6 723
162 6 723

x a b= − = − +
−

 and 

using the TI92+, we see that x is approximately 1.231 
Alternatively we could use Newton’s method to find a zero 
of 34 2 6 0x x− − =  by iterating 

( )
( )

3 3

1 2 2

4 2 6 8 6
' 12 2 12 2

n n n n
n n n

n n n

f x x x xx x x
f x x x+

− − +
= − = − =

− −
 

 
      To do this on the TI83, enter in the function on the 
Vars page by hitting the “Y=” button and expressing the 
formula as shown in the first screen shot at left.  Then 
“quit” and on the “home page” store an initial guess in x 
using the “STO” key 

 

       

And then hit the “Vars” button to bring up the menu to find Y1 and place it on the home page by 
arrowing over/down to highlight and pressing enter.  The hit the “Sto” key and store the output of 
Y1 back to the input as shown in the second screen capture at right.  Then just keep hitting enter.  
As you can see, Newton’s method then converges rapidly to the same value we got by the more 
intricate method above. 
 
     Finally, if you like the “Kraft Cheese” method, you could use 
the “solve” feature on, say, the TI85.  On the 85 you hit 
“2nd+GRAPH” to access the solver menu and then type in the 
formula in the “exp” field and set its value to zero as shown in 
the screen capture at right.  Then put an initial gues in the field 
for x and, with the cursor still in that field, hit F5 (SOLVE).  The 
result gives you two more digits than the TI92+.  GO 85! 
 
 
 
 
 
 



8. Investigate Newton’s method for the family of cubic polynomials, ( ) ( )( )22f x x x c= + +  
a. Can you find a two-cycle in the case where c = –1 ? 

SOLN:  Newton’s method iterates ( )
( )

( )3 23 2

1 2 2

22 2
' 3 4 3 4

n nn n n n
n n n

n n n n n

x x cf x x x cx cx x x
f x x x c x x c+

+ −+ + +
= − = − =

+ + + +
 

Ok, haven’t used the ’86 yet, so on the ’86 enter the iteration formula as y1 (first screen capture 
below.)  The store -1 into C using the “STO” button.  You can then start experimenting with 
various initial values.  If you start with x1 = 1, then you’ll stay there (a “1 cycle.”)   
Starting at x1 = 0.5  first pushes the iterates beyond 1 and then they decrease, approaching 1 
from above (3rd screen shot below.)  To get some idea of the dynamics of this process, look at a 
graph of the function whose zeros we seek.  By inspection, we see that the initial value will be 
somewhere between the local extrema 

( ) ( )3 2 2 2 7' 2 2 3 4 1 0 0.1076 and 1.549
3

df x x x x x x x
dx

− ±
= + − − = + − = ⇔ = ≈ −  

             
          So we start experimenting with iterating Newton’s formula with various initial values. 
Below we see x1 = 0 immediately goes to the zero at –2 (first screen capture below.) Nudging 
the initial value a bit to the left, x1 = –0.1 we get iterates that initially oscillate but then settle in 
a path increasing steadily towards –2 (second screen capture below.)  Nudging a notch further 
to the left, x1 = –0.2, the next iterate ends up to the right of the local max and then advances 
steadily towards the zero at x= –1 (this is the third screen capture below.)   

                       
      Experimenting with various values between –0.1 and –0.2, we get various results 
converging towards either –2 or –1, but as we zero in on what seems to lead to a two-cycle we 
see that  x1 = –0.104 actually ends up converging to x = 1.   

           

             
Looks we could use some heavier guns.  This could be a job for the TI92+! So for a two-cycle 
we want ( )( )N N x x= .  On the TI92+ we can enter the formula for the Newton’s method 
iteration and put –1  in c as we did on the TI86, but with the extra computer algebra features of 
the TI92+, we can actually use the calculator to approximate solutions to ( )( )N N x x= .  This 
is shown in the sequence of TI92+ screen captures which follow.   



                
 
 

              
 
Evidently, either x1 = –0.104218626085 or x1 = –1.45884113032 leads to the two-cycle 
oscillating from the first back to the second or vice-versa.  Let’s go back to the TI86 and see if 
this actually works.  Well, as the screen captures below show, it almost works: the trouble is 
the two-cycle is unstable, so any slight deviation from the perfect initial value will eventually 
wobble off the cycle, as shown in the sequence of values shown below.  Initially it shows nice 
oscillatory behavior, but the errors compound and it ends up attracting to -1.  So there is a two-
cycle, but it’s unstable and since our initial value is necessarily an approximation, it will 
eventually wobble away. 
 

      
 

b. For values of c between 0 and 0.2, what dynamics do you observe from the initial value 
2
3

x = − ?   

SOLN:  This is an open ended question and an invitation to experiment.  
 Let’s start with c = 0.1: 

    
Here we see quite a bit of roaming about before settling in on the zero at –2. 
How about c = 0.15: 

  
With c = 0.5  

    



With c = 0.9 

          
So we experiment with various values until we discover this interesting zone close to c = 0.2 
where we find an attractive 2-cycle with c = 0.196: 

         

         
An attractive 4-cycle with c = 0.19: 

          

  
And, zounds!  An attractive 8-cycle with c = 0.188 

            

          

            

          
 


